ﻻ يوجد ملخص باللغة العربية
We have investigated the low temperature specific heat properties as a function of magnetic field in the strongly correlated layered cobalt oxide [BiBa$_{0.66}$K$_{0.36}$O$_2$]CoO$_2$. These measurements reveal two kinds of magnetic field dependent contributions in qualitative agreement with the presence of a previously inferred magnetic Quantum Critical Point (QCP). First, the coefficient of the low temperature T$^3$ behavior of the specific heat turns out to sizeably decrease near a magnetic field consistent with the critical value reported in a recent paper. In addition, a moderate but significant enhancement of the Sommerfeld coefficient is found in the vicinity of the QCP suggesting a slight increase of the electronic effective mass. This result contrasts with the divergent behavior of the previously reported Pauli susceptibility. Thus, a strongly enhanced Wilson ratio is deduced, suggesting efficient ferromagnetic fluctuations in the Fermi liquid regime which could explain the unusual magnetic field dependent specific heat. As a strong check, the high magnetic field Wilson ratio asymptotically recovers the universal limit of the local Fermi liquid against ferromagnetism.
We report on susceptibility measurements in the strongly correlated layered cobalt oxide [BiBa0.66K0.36O2]CoO2, which demonstrate the existence of a magnetic quantum critical point (QCP) governing the electronic properties. The investigated low frequ
We report infrared spectroscopic properties of the strongly correlated layered cobalt oxide [BiBa$_{0.66}$K$_{0.36}$O$_2$]CoO$_2$. These measurements performed on single crystals allow us to determine the optical conductivity as a function of tempera
Correlations between electrons and the effective dimensionality are crucial factors that shape the properties of an interacting electron system. For example, the onsite Coulomb repulsion, U, may inhibit, or completely block the intersite electron hop
Magnetic and phonon excitations in the antiferromagnet CoO with an unquenched orbital angular momentum are studied by neutron scattering. Results of energy scans in several Brillouin zones in the (HHL) plane for energy transfers up to 16 THz are pres
We investigated size effects on thermoelectricity in thin films of a strongly correlated layered cobaltate. At room temperature, the thermopower is independent of thickness down to 6 nm. This unusual behavior is inconsistent with the Fuchs-Sondheimer