ترغب بنشر مسار تعليمي؟ اضغط هنا

Inducing Effect on the Percolation Transition in Complex Networks

162   0   0.0 ( 0 )
 نشر من قبل Hai-Jun Zhou
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Percolation theory concerns the emergence of connected clusters that percolate through a networked system. Previous studies ignored the effect that a node outside the percolating cluster may actively induce its inside neighbours to exit the percolating cluster. Here we study this inducing effect on the classical site percolation and K-core percolation, showing that the inducing effect always causes a discontinuous percolation transition. We precisely predict the percolation threshold and core size for uncorrelated random networks with arbitrary degree distributions. For low-dimensional lattices the percolation threshold fluctuates considerably over realizations, yet we can still predict the core size once the percolation occurs. The core sizes of real-world networks can also be well predicted using degree distribution as the only input. Our work therefore provides a theoretical framework for quantitatively understanding discontinuous breakdown phenomena in various complex systems.



قيم البحث

اقرأ أيضاً

As a fundamental structural transition in complex networks, core percolation is related to a wide range of important problems. Yet, previous theoretical studies of core percolation have been focusing on the classical ErdH{o}s-Renyi random networks wi th Poisson degree distribution, which are quite unlike many real-world networks with scale-free or fat-tailed degree distributions. Here we show that core percolation can be analytically studied for complex networks with arbitrary degree distributions. We derive the condition for core percolation and find that purely scale-free networks have no core for any degree exponents. We show that for undirected networks if core percolation occurs then it is always continuous while for directed networks it becomes discontinuous when the in- and out-degree distributions are different. We also apply our theory to real-world directed networks and find, surprisingly, that they often have much larger core sizes as compared to random models. These findings would help us better understand the interesting interplay between the structural and dynamical properties of complex networks.
We study a generalization of the voter model on complex networks, focusing on the scaling of mean exit time. Previous work has defined the voter model in terms of an initially chosen node and a randomly chosen neighbor, which makes it difficult to di sentangle the effects of the stochastic process itself relative to the network structure. We introduce a process with two steps, one that selects a pair of interacting nodes and one that determines the direction of interaction as a function of the degrees of the two nodes and a parameter $alpha$ which sets the likelihood of the higher degree node giving its state. Traditional voter model behavior can be recovered within the model. We find that on a complete bipartite network, the traditional voter model is the fastest process. On a random network with power law degree distribution, we observe two regimes. For modest values of $alpha$, exit time is dominated by diffusive drift of the system state, but as the high nodes become more influential, the exit time becomes becomes dominated by frustration effects. For certain selection processes, a short intermediate regime occurs where exit occurs after exponential mixing.
Many sociological networks, as well as biological and technological ones, can be represented in terms of complex networks with a heterogeneous connectivity pattern. Dynamical processes taking place on top of them can be very much influenced by this t opological fact. In this paper we consider a paradigmatic model of non-equilibrium dynamics, namely the forest fire model, whose relevance lies in its capacity to represent several epidemic processes in a general parametrization. We study the behavior of this model in complex networks by developing the corresponding heterogeneous mean-field theory and solving it in its steady state. We provide exact and approximate expressions for homogeneous networks and several instances of heterogeneous networks. A comparison of our analytical results with extensive numerical simulations allows to draw the region of the parameter space in which heterogeneous mean-field theory provides an accurate description of the dynamics, and enlights the limits of validity of the mean-field theory in situations where dynamical correlations become important.
In a system of interdependent networks, an initial failure of nodes invokes a cascade of iterative failures that may lead to a total collapse of the whole system in a form of an abrupt first order transition. When the fraction of initial failed nodes $1-p$ reaches criticality, $p=p_c$, the abrupt collapse occurs by spontaneous cascading failures. At this stage, the giant component decreases slowly in a plateau form and the number of iterations in the cascade, $tau$, diverges. The origin of this plateau and its increasing with the size of the system remained unclear. Here we find that simultaneously with the abrupt first order transition a spontaneous second order percolation occurs during the cascade of iterative failures. This sheds light on the origin of the plateau and on how its length scales with the size of the system. Understanding the critical nature of the dynamical process of cascading failures may be useful for designing strategies for preventing and mitigating catastrophic collapses.
The majority-vote (MV) model is one of the simplest nonequilibrium Ising-like model that exhibits a continuous order-disorder phase transition at a critical noise. In this paper, we present a quenched mean-field theory for the dynamics of the MV mode l on networks. We analytically derive the critical noise on arbitrary quenched unweighted networks, which is determined by the largest eigenvalue of a modified network adjacency matrix. By performing extensive Monte Carlo simulations on synthetic and real networks, we find that the performance of the quenched mean-field theory is superior to a heterogeneous mean-field theory proposed in a previous paper [Chen emph{et al.}, Phys. Rev. E 91, 022816 (2015)], especially for directed networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا