ﻻ يوجد ملخص باللغة العربية
The majority-vote (MV) model is one of the simplest nonequilibrium Ising-like model that exhibits a continuous order-disorder phase transition at a critical noise. In this paper, we present a quenched mean-field theory for the dynamics of the MV model on networks. We analytically derive the critical noise on arbitrary quenched unweighted networks, which is determined by the largest eigenvalue of a modified network adjacency matrix. By performing extensive Monte Carlo simulations on synthetic and real networks, we find that the performance of the quenched mean-field theory is superior to a heterogeneous mean-field theory proposed in a previous paper [Chen emph{et al.}, Phys. Rev. E 91, 022816 (2015)], especially for directed networks.
Non-Markovian dynamics pervades human activity and social networks and it induces memory effects and burstiness in a wide range of processes including inter-event time distributions, duration of interactions in temporal networks and human mobility. H
Through Monte Carlo Simulation, the well-known majority-vote model has been studied with noise on directed random graphs. In order to characterize completely the observed order-disorder phase transition, the critical noise parameter $q_c$, as well as
We study analytically a variant of the one-dimensional majority-vote model in which the individual retains its opinion in case there is a tie among the neighbors opinions. The individuals are fixed in the sites of a ring of size $L$ and can interact
In this paper, we generalize the original majority-vote (MV) model with noise from two states to arbitrary $q$ states, where $q$ is an integer no less than two. The main emphasis is paid to the comparison on the nature of phase transitions between th
The stationary critical properties of the isotropic majority vote model on random lattices with quenched connectivity disorder are calculated by using Monte Carlo simulations and finite size analysis. The critical exponents $gamma$ and $beta$ are fou