ﻻ يوجد ملخص باللغة العربية
Recently, the group of coincidence isometries of the root lattice $A_4$ has been determined providing a classification of these isometries with respect to their coincidence indices. A more difficult task is the classification of all CSLs, since different coincidence isometries may generate the same CSL. In contrast to the typical examples in dimensions $d leq 3$, where coincidence isometries generating the same CSL can only differ by a symmetry operation, the situation is more involved in 4 dimensions. Here, we find coincidence isometries that are not related by a symmetry operation but nevertheless give rise to the same CSL. We indicate how the classification of CSLs can be obtained by making use of the icosian ring and provide explicit criteria for two isometries to generate the same CSL. Moreover, we determine the number of CSLs of a given index and encapsulate the result in a Dirichlet series generating function.
We present results for the decay constants of the $D$ and $D_s$ mesons computed in lattice QCD with $N_f=2+1$ dynamical flavours. The simulations are based on RBC/UKQCDs domain wall ensembles with both physical and unphysical light-quark masses and l
Diversities are a generalization of metric spaces, where instead of the non-negative function being defined on pairs of points, it is defined on arbitrary finite sets of points. Diversities have a well-developed theory. This includes the concept of a
Four types of discrete transforms of Weyl orbit functions on the finite point sets are developed. The point sets are formed by intersections of the dual-root lattices with the fundamental domains of the affine Weyl groups. The finite sets of weights,
We study Artin-Tits braid groups $mathbb{B}_W$ of type ADE via the action of $mathbb{B}_W$ on the homotopy category $mathcal{K}$ of graded projective zigzag modules (which categorifies the action of the Weyl group $W$ on the root lattice). Following
We argue that in order to account for the muon anomalous magnetic moment $g-2$, dark matter and LHC data, non-universal gaugino masses $M_i$ at the high scale are required in the framework of the Minimal Supersymmetric Standard Model (MSSM). We also