ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual-root lattice discretization of Weyl orbit functions

61   0   0.0 ( 0 )
 نشر من قبل Jiri Hrivnak
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Four types of discrete transforms of Weyl orbit functions on the finite point sets are developed. The point sets are formed by intersections of the dual-root lattices with the fundamental domains of the affine Weyl groups. The finite sets of weights, labelling the orbit functions, obey symmetries of the dual extended affine Weyl groups. Fundamental domains of the dual extended affine Weyl groups are detailed in full generality. Identical cardinality of the point and weight sets is proved and explicit counting formulas for these cardinalities are derived. Discrete orthogonality of complex-valued Weyl and real-valued Hartley orbit functions over the point sets is established and the corresponding discrete Fourier-Weyl and Hartley-Weyl transforms are formulated.



قيم البحث

اقرأ أيضاً

Weyl-orbit functions have been defined for each simple Lie algebra, and permit Fourier-like analysis on the fundamental region of the corresponding affine Weyl group. They have also been discretized, using a refinement of the coweight lattice, so tha t digitized data on the fundamental region can be Fourier-analyzed. The discretized orbit function has arguments that are redundant if related by the affine Weyl group, while its labels, the Weyl-orbit representatives, invoke the dual affine Weyl group. Here we discretize the orbit functions in a novel way, by using the weight lattice. A cleaner theory results, with symmetry between the arguments and labels of the discretized orbit functions. Orthogonality of the new discretized orbit functions is proved, and leads to the construction of unitary, symmetric matrices with Weyl-orbit-valued elements. For one type of orbit function, the matrix coincides with the Kac-Peterson modular $S$ matrix, important for Wess-Zumino-Novikov-Witten conformal field theory.
The properties of the four families of special functions of three real variables, called here C-, S-, S^s- and S^l-functions, are studied. The S^s- and S^l-functions are considered in all details required for their exploitation in Fourier expansions of digital data, sampled on finite fragment of lattices of any density and of the 3D symmetry imposed by the weight lattices of B_3 and C_3 simple Lie algebras/groups. The continuous interpolations, which are induced by the discrete expansions, are exemplified and compared for some model functions.
592 - Marzena Szajewska 2011
Properties of four infinite families of special functions of two real variables, based on the compact simple Lie group G2, are compared and described. Two of the four families (called here C- and S-functions) are well known, whereas the other two (S^ L- and S^S-functions) are not found elsewhere in the literature. It is shown explicitly that all four families have similar properties. In particular, they are orthogonal when integrated over a finite region F of the Euclidean space, and they are discretely orthogonal when their values, sampled at the lattice points F_M subset F, are added up with a weight function appropriate for each family. Products of ten types among the four families of functions, namely CC, CS, SS, SS^L, CS^S, SS^L, SS^S, S^SS^S, S^LS^S and S^LS^L, are completely decomposable into the finite sum of the functions. Uncommon arithmetic properties of the functions are pointed out and questions about numerous other properties are brought forward.
The affine Weyl groups with their corresponding four types of orbit functions are considered. Two independent admissible shifts, which preserve the symmetries of the weight and the dual weight lattices, are classified. Finite subsets of the shifted w eight and the shifted dual weight lattices, which serve as a sampling grid and a set of labels of the orbit functions, respectively, are introduced. The complete sets of discretely orthogonal orbit functions over the sampling grids are found and the corresponding discrete Fourier transforms are formulated. The eight standard one-dimensional discrete cosine and sine transforms form special cases of the presented transforms.
This study derives geometric, variational discretizations of continuum theories arising in fluid dynamics, magnetohydrodynamics (MHD), and the dynamics of complex fluids. A central role in these discretizations is played by the geometric formulation of fluid dynamics, which views solutions to the governing equations for perfect fluid flow as geodesics on the group of volume-preserving diffeomorphisms of the fluid domain. Inspired by this framework, we construct a finite-dimensional approximation to the diffeomorphism group and its Lie algebra, thereby permitting a variational temporal discretization of geodesics on the spatially discretized diffeomorphism group. The extension to MHD and complex fluid flow is then made through an appeal to the theory of Euler-Poincar{e} systems with advection, which provides a generalization of the variational formulation of ideal fluid flow to fluids with one or more advected parameters. Upon deriving a family of structured integrators for these systems, we test their performance via a numerical implementation of the update schemes on a cartesian grid. Among the hallmarks of these new numerical methods are exact preservation of momenta arising from symmetries, automatic satisfaction of solenoidal constraints on vector fields, good long-term energy behavior, robustness with respect to the spatial and temporal resolution of the discretization, and applicability to irregular meshes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا