ترغب بنشر مسار تعليمي؟ اضغط هنا

Muon g-2 and Dark Matter suggest Non-Universal Gaugino Masses: $mathbf{SU(5)times A_4}$ case study at the LHC

101   0   0.0 ( 0 )
 نشر من قبل Patrick Schaefers
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that in order to account for the muon anomalous magnetic moment $g-2$, dark matter and LHC data, non-universal gaugino masses $M_i$ at the high scale are required in the framework of the Minimal Supersymmetric Standard Model (MSSM). We also need a right-handed smuon $tildemu_R$ with a mass around 100 GeV, evading LHC searches due to the proximity of a neutralino $tilde{chi}^0_1$ several GeV lighter which allows successful dark matter. We discuss such a scenario in the framework of an $SU(5)$ Grand Unified Theory (GUT) combined with $A_4$ family symmetry, where the three $overline{5}$ representations form a single triplet of $A_4$ with a unified soft mass $m_F$, while the three $10$ representations are singlets of $A_4$ with independent soft masses $m_{T1}, m_{T2}, m_{T3}$. Although $m_{T2}$ (and hence $tildemu_R$) may be light, the muon $g-2$ and relic density also requires light $M_1simeq 250$ GeV, which is incompatible with universal gaugino masses due to LHC constraints on $M_2$ and $M_3$ arising from gaugino searches. After showing that universal gaugino masses $M_{1/2}$ at the GUT scale are excluded by gluino searches, we provide a series of benchmarks which show that while $M_{1}= M_{2} ll M_3$ is also excluded by chargino searches, $M_{1}< M_{2} ll M_3$ is currently allowed. Even this scenario is almost excluded by the tension between the muon $g-2$, relic density, Dark Matter direct detection and LHC data. The surviving parameter space is characterised by a higgsino mass $mu approx -300$ GeV, as required by the muon $g-2$. The LHC will be able to fully test this scenario with the upgraded luminosity via muon-dominated tri- and di-lepton signatures resulting from higgsino dominated $tilde{chi}^pm_1 , tilde{chi}^0_2$ and $tilde{chi}^+_1 , tilde{chi}^-_1$ production.



قيم البحث

اقرأ أيضاً

We consider two classes of supersymmetric models with nonuniversal gaugino masses at M_GUT in an attempt to resolve the apparent muon g-2 anomaly encountered in the Standard Model. We explore two distinct scenarios, one in which all gaugino masses ha ve the same sign at M_GUT, and a second case with opposite sign gaugino masses. The sfermion masses in both cases are assumed to be universal at M_GUT. We exploit the non universality among gaugino masses to realize large mass splitting between the colored and non-colored sfermions. Thus, the sleptons can have masses in the few hundred GeV range, whereas the colored sparticles turn out to be an order of magnitude or so heavier. In both models the resolution of the muon g-2 anomaly is compatible, among other things, with a 125-126 GeV Higgs boson mass and the WMAP dark matter bounds.
We explore the sparticle mass spectra including LSP dark matter within the framework of supersymmetric $SU(4)_c times SU(2)_L times SU(2)_R$ (422) models, taking into account the constraints from extensive LHC and cold dark matter searches. The soft supersymmetry-breaking parameters at $M_{GUT}$ can be non-universal, but consistent with the 422 symmetry. We identify a variety of coannihilation scenarios compatible with LSP dark matter, and study the implications for future supersymmetry searches and the ongoing muon g-2 experiment.
In unified $mathcal{N}=1$ supergravity scenario the gaugino masses can be non-universal. The patterns of these non-universalities are dictated by the vacuum expectation values of non-singlet chiral super-fields in visible sector. Here, we have analys ed the model independent correlations among the gaugino masses with an aim to explain the $[1div 3]sigma$ excess of muon (g-2) ($Delta a_mu$). We have also encapsulated the interconnections among other low and high scale parameters, compatible with the collider constraints, Higgs mass, relic density and flavour data. We have noted that the existing non-universal models are not capable enough to explain $Delta a_mu$ at $[1div 2]sigma$ level. In the process, we have also shown the impact of recent limits from the searches for disappearing track and long lived charged particles at the LHC. These are the most stringent limits so far ruling out a large parameter space allowed by other constraints. We have also performed model guided analysis where gaugino masses are linear combination of contributions coming from singlet and non-singlet chiral super-fields. Here, a new mixing parameter has been introduced. Following the earlier methodology, we have been able to constrain this mixing parameter and pin down the promising models on this notion.
We demonstrate that natural supersymmetry is readily realized in the framework of SU(4)_c times SU(2)_L times SU(2)_R with non-universal gaugino masses. Focusing on ameliorating the little hierarchy problem, we explore the parameter space of this mod el which yields small fine-tuning measuring parameters (natural supersymmetry) at the electroweak scale (Delta_{EW}) as well as at high scale (Delta_{HS}). It is possible to have both Delta_{EW} and Delta_{HS} less than 100 in these models, (2 % or better fine-tuning), while keeping the light CP-even (Standard Model-like) Higgs mass in the 123 GeV-127 GeV range. The light stop quark mass lies in the range 700 GeV <m_{tilde{t}_{1}}< 1500 GeV, and the range for the light stau lepton mass is 900 GeV <m_{tilde{tau}_{1}}< 1300 GeV. The first two family squarks are in the mass range 3000 GeV <m_{tilde{t}_{1}}< 4500 GeV, and for the gluino we find 2500 GeV <m_{tilde{g}_{1}}< 3500 GeV. We do not find any solution with natural supersymmetry which yields significant enhancement for Higgs production and decay in the diphoton channel.
In the light of the recent result of the Muon g-2 experiment and the update on the test of lepton flavour universality $R_K$ published by the LHCb collaboration, we systematically build and discuss a set of models with minimal field content that can simultaneously give: (i) a thermal Dark Matter candidate; (ii) large loop contributions to $bto sellell$ processes able to address $R_K$ and the other $B$ anomalies; (iii) a natural solution to the muon $g-2$ discrepancy through chirally-enhanced contributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا