ترغب بنشر مسار تعليمي؟ اضغط هنا

Global HI Kinematics in Dwarf Galaxies

397   0   0.0 ( 0 )
 نشر من قبل Adrienne Stilp
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HI line widths are typically interpreted as a measure of ISM turbulence, which is potentially driven by star formation. In an effort to better understand the possible connections between line widths and star formation, we have characterized hi{} kinematics in a sample of nearby dwarf galaxies by co-adding line-of-sight spectra after removing the rotational velocity to produce an average, global hi{} line profile. These superprofiles are composed of a central narrow peak (~6-10 km/s) with higher-velocity wings to either side that contain ~10-15% of the total flux. The superprofiles are all very similar, indicating a universal global HI profile for dwarf galaxies. We compare characteristics of the superprofiles to various galaxy properties, such as mass and measures of star formation (SF), with the assumption that the superprofile represents a turbulent peak with energetic wings to either side. We use these quantities to derive average scale heights for the sample galaxies. When comparing to physical properties, we find that the velocity dispersion of the central peak is correlated with $<Sigma_mathrm{HI}>$. The fraction of mass and characteristic velocity of the high velocity wings are correlated with measures of SF, consistent with the picture that SF drives surrounding HI to higher velocities. While gravitational instabilities provide too little energy, the SF in the sample galaxies does provide enough energy through supernovae, with realistic estimates of the coupling efficiency, to produce the observed superprofiles.



قيم البحث

اقرأ أيضاً

Neutral hydrogen (HI) velocity dispersions are believed to be set by turbulence in the interstellar medium (ISM). Although turbulence is widely believed to be driven by star formation (SF), recent studies have shown that this driving mechanism may no t be dominant in regions of low SF rate surface density (SFRSD), such as found in dwarf galaxies or the outer regions of spirals. We have generated average HI line profiles in a number of nearby dwarfs and low-mass spirals by co-adding HI spectra in regions with either a common radius or SFRSD. We find that the spatially-resolved superprofiles are composed of a central narrow peak (5-15 km/s) with higher velocity wings to either side. With the assumption that the central peak reflects the turbulent velocity dispersion, we compare HI kinematics to local ISM properties, including surface mass densities and measures of SF. The HI velocity dispersion is correlated most strongly with surface mass density, which points at a gravitational origin for turbulence, but it is unclear which instabilities can operate efficiently in these systems. SF energy is produced at a level sufficient to drive HI turbulent motions where SFRSD > 10^-4 Msun yr^-1 kpc^-2. At low SF intensities, SF does not supply enough energy for turbulence, nor does it uniquely determine the velocity dispersion. Nevertheless, SF appears to provide a lower threshold for HI velocity dispersions. We find that coupling efficiency decreases with increasing SFRSD, consistent with a picture where SF couples to the ISM with constant efficiency, but that less of that energy is found in HI at higher SFRSD. We examine a number of potential drivers of HI turbulence, including SF, gravitational instabilities, the magnetorotational instability, and accretion, and find that no single mechanism can drive the observed levels of turbulence at low SFRSD. We discuss possible solutions to this conundrum.
74 - K. A. Lutz 2018
By analysing a sample of galaxies selected from the HI Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected HI content based on their optical properties, we investigate what drives these HI eXtreme (HIX) galaxies to be so HI-r ich. We model the HI kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed HIX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model Dark Sage. We find that (1) HI discs in HIX galaxies are more likely to be warped and more likely to host HI arms and tails than in the control galaxies, (2) the average HI and average stellar column density of HIX galaxies is comparable to the control sample, (3) HIX galaxies have higher HI and baryonic specific angular momenta than control galaxies, (4) most HIX galaxies live in higher-spin haloes than most control galaxies. These results suggest that HIX galaxies are HI-rich because they can support more HI against gravitational instability due to their high specific angular momentum. The majority of the HIX galaxies inherits their high specific angular momentum from their halo. The HI content of HIX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array (ATCA) through the large program C 2705.
The shape of a galaxys spatially unresolved, globally integrated 21-cm emission line depends on its internal gas kinematics: galaxies with rotation-supported gas disks produce double-horned profiles with steep wings, while galaxies with dispersion-su pported gas produce Gaussian-like profiles with sloped wings. Using mock observations of simulated galaxies from the FIRE project, we show that one can therefore constrain a galaxys gas kinematics from its unresolved 21-cm line profile. In particular, we find that the kurtosis of the 21-cm line increases with decreasing $V/sigma$, and that this trend is robust across a wide range of masses, signal-to-noise ratios, and inclinations. We then quantify the shapes of 21-cm line profiles from a morphologically unbiased sample of $sim$2000 low-redshift, HI-detected galaxies with $M_{rm star} = 10^{7-11} M_{odot}$ and compare to the simulated galaxies. At $M_{rm star} gtrsim 10^{10} M_{odot}$, both the observed and simulated galaxies produce double-horned profiles with low kurtosis and steep wings, consistent with rotation-supported disks. Both the observed and simulated line profiles become more Gaussian-like (higher kurtosis and less-steep wings) at lower masses, indicating increased dispersion support. However, the simulated galaxies transition from rotation to dispersion support more strongly: at $M_{rm star} = 10^{8-10}M_{odot}$, most of the simulations produce more Gaussian-like profiles than typical observed galaxies with similar mass, indicating that gas in the low-mass simulated galaxies is, on average, overly dispersion-supported. Most of the lower-mass simulated galaxies also have somewhat lower gas fractions than the median of the observed population. The simulations nevertheless reproduce the observed line-width baryonic Tully-Fisher relation, which is insensitive to rotation vs. dispersion support.
We present DEIMOS multi-object spectroscopy (MOS) of 22 star-forming dwarf galaxies located in four gas-rich groups, including six newly-discovered dwarfs. Two of the galaxies are strong tidal dwarf galaxy (TDG) candidates based on our luminosity-met allicity relation definition. We model the rotation curves of these galaxies. Our sample shows low mass-to-light ratios (M/L=0.73$pm0.39M_odot/L_odot$) as expected for young, star-forming dwarfs. One of the galaxies in our sample has an apparently strongly-falling rotation curve, reaching zero rotational velocity outside the turnover radius of $r_{turn}=1.2r_e$. This may be 1) a polar ring galaxy, with a tilted bar within a face-on disk; 2) a kinematic warp. These scenarios are indistinguishable with our current data due to limitations of slit alignment inherent to MOS-mode observations. We consider whether TDGs can be detected based on their tidal radius, beyond which tidal stripping removes kinematic tracers such as H$alpha$ emission. When the tidal radius is less than about twice the turnover radius, the expected falling rotation curve cannot be reliably measured. This is problematic for as much as half of our sample, and indeed more generally, galaxies in groups like these. Further to this, the H$alpha$ light that remains must be sufficiently bright to be detected; this is only the case for three (14%) galaxies in our sample. We conclude that the falling rotation curves expected of tidal dwarf galaxies are intrinsically difficult to detect.
We present a recalibration of the luminosity-metallicity relation for gas-rich, star-forming dwarfs to magnitudes as faint as M$_R$ ~ -13. We use the Dopita et al. (2013) metallicity calibrations to calibrate the relation for all of the data in this analysis. In metallicity-luminosity space we find two sub-populations within a sample of high-confidence SDSS DR8 star-forming galaxies; 52% are metal-rich giants and 48% are metal-medium galaxies. Metal-rich dwarfs classified as tidal dwarf galaxy (TDG) candidates in the literature are typically of metallicity 12 + log(O/H) = 8.70 $pm$ 0.05, while SDSS dwarfs fainter than M$_R$ = -16 have a mean metallicity of 12 + log(O/H) = 8.28 $pm$ 0.10, regardless of their luminosity, indicating that there is an approximate floor to the metallicity of low luminosity galaxies. Our hydrodynamical simulations predict that TDGs should have metallicities elevated above the normal luminosity-metallicity relation. Metallicity can therefore be a useful diagnostic for identifying TDG candidate populations in the absence of tidal tails. At magnitudes brighter than M$_R$ ~ -16 our sample of 53 star-forming galaxies in 9 HI gas-rich groups is consistent with the normal relation defined by the SDSS sample. At fainter magnitudes there is an increase in dispersion in metallicity of our sample, suggestive of a wide range of HI content and environment. In our sample we identify three (16% of dwarfs) strong TDG candidates (12 + log(O/H) > 8.6), and four (21%) very metal poor dwarfs (12 + log(O/H) < 8.0), which are likely gas-rich dwarfs with recently ignited star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا