ﻻ يوجد ملخص باللغة العربية
By analysing a sample of galaxies selected from the HI Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected HI content based on their optical properties, we investigate what drives these HI eXtreme (HIX) galaxies to be so HI-rich. We model the HI kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed HIX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model Dark Sage. We find that (1) HI discs in HIX galaxies are more likely to be warped and more likely to host HI arms and tails than in the control galaxies, (2) the average HI and average stellar column density of HIX galaxies is comparable to the control sample, (3) HIX galaxies have higher HI and baryonic specific angular momenta than control galaxies, (4) most HIX galaxies live in higher-spin haloes than most control galaxies. These results suggest that HIX galaxies are HI-rich because they can support more HI against gravitational instability due to their high specific angular momentum. The majority of the HIX galaxies inherits their high specific angular momentum from their halo. The HI content of HIX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array (ATCA) through the large program C 2705.
This paper presents the analysis of optical integral field spectra for the HI eXtreme (HIX) galaxy sample. HIX galaxies host at least 2.5 times more atomic gas (HI) than expected from their optical R-band luminosity. Previous examination of their sta
HI line widths are typically interpreted as a measure of ISM turbulence, which is potentially driven by star formation. In an effort to better understand the possible connections between line widths and star formation, we have characterized hi{} kine
Using data taken as part of the Bluedisk project we study the connection between neutral hydrogen (HI) in the environment of spiral galaxies and that in the galaxies themselves. We measure the total HI mass present in the environment in a statistical
We present 21-cm Spectral Line Observations of Neutral Gas with the VLA (21-SPONGE), a Karl G. Jansky Very Large Array (VLA) large project (~600 hours) for measuring the physical properties of Galactic neutral hydrogen (HI). 21-SPONGE is distinguishe
We have conducted an HI 21 cm emission-line survey of six loose groups of galaxies chosen to be analogs to the Local Group. The survey was conducted using the Parkes Multibeam instrument and the Australia Telescope Compact Array (ATCA) over a ~1 Mpc^