ترغب بنشر مسار تعليمي؟ اضغط هنا

Compositionally-modulated Si1-xGex multilayers with cross-plane thermal conductivity below the thin-film alloy limit

185   0   0.0 ( 0 )
 نشر من قبل Armando Rastelli
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe epitaxial Ge/Si multilayers with cross-plane thermal conductivities which can be systematically reduced to exceptionally low values, as compared both with bulk and thin-film SiGe alloys of the same average concentration, by simply changing the thicknesses of the constituent layers. Ab initio calculations reveal that partial interdiffusion of Ge into the Si spacers, which naturally results from Ge segregation during growth, plays a determinant role, lowering the thermal conductivity below what could be achieved without interdiffusion (perfect superlattice), or with total interdiffusion (alloy limit). This phenomenon is similar to the one previously observed in alloys with embedded nanoparticles, and it stresses the importance of combining alloy and nanosized scatterers simultaneously to minimize thermal conductivity. Our calculations thus suggest that superlattices with sharp interfaces, which are commonly sought but difficult to realize, are worse than compositionally-modulated Si1-xGex multilayers in the search for materials with ultralow thermal conductivities.

قيم البحث

اقرأ أيضاً

We experimentally demonstrate the formation of room-temperature skyrmions with radii of about 25,nm in easy-plane anisotropy multilayers with interfacial Dzyaloshinskii-Moriya interaction (DMI). We detect the formation of individual magnetic skyrmion s by magnetic force microscopy and find that the skyrmions are stable in out-of-plane fields up to about 200 mT. We determine the interlayer exchange coupling as well as the strength of the interfacial DMI. Additionally, we investigate the dynamic microwave spin excitations by broadband magnetic resonance spectroscopy. From the uniform Kittel mode we determine the magnetic anisotropy and low damping $alpha_{mathrm{G}} < 0.04$. We also find clear magnetic resonance signatures in the non-uniform (skyrmion) state. Our findings demonstrate that skyrmions in easy-plane multilayers are promising for spin-dynamical applications.
Rare earth nickelates RENiO3 which attract interest due to their sharp metal-insulator phase transition, are instable in bulk form due to the necessity of an important oxygen pressure to stabilize Ni in its 3+ state of oxidation. Here, we report the stabilization of rare earth nickelates in [(SmNiO3)t/(NdNiO3)t]n thin film multilayers, t being the thickness of layers alternated n times. Both bilayers and multilayers have been deposited by Metal-Organic Chemical Vapour Deposition. The multilayer structure and the presence of the metastable phases SmNiO3 and NdNiO3 are evidenced from by X-ray and Raman scattering. Electric measurements of a bilayer structure further support the structural quality of the embedded rare earth nickelate layers.
Heterostructures consisting of alternating GaN/AlN epitaxial layers represent the building-blocks of state-of-the-art devices employed for active cooling and energy-saving lightning. Insights into the heat conduction of these structures are essential in the perspective of improving the heat management for prospective applications. Here, the cross-plane (perpendicular to the samples surface) thermal conductivity of GaN/AlN superlattices as a function of the layers thickness is established by employing the $3omega$-method. Moreover, the role of interdiffusion at the interfaces on the phonon scattering is taken into account in the modelling and data treatment. It is found, that the cross-plane thermal conductivity of the epitaxial heterostructures can be driven to values as low as 5.9 W/(m$cdot$K) comparable with those reported for amorphous films, thus opening wide perspectives for optimized heat management in III-nitride-based epitaxial multilayers.
Sub-micron-thick layers of hexagonal boron nitride (hBN) exhibit high in-plane thermal conductivity and useful optical properties, and serve as dielectric encapsulation layers with low electrostatic inhomogeneity for graphene devices. Despite the pro mising applications of hBN as a heat spreader, the cross-plane phonon mean free paths in hBN have not been measured. We measure the cross-plane thermal conductivity of hBN flakes exfoliated from bulk crystals. We find that the thermal conductivity is extremely sensitive to film thickness. We measure a forty-fold increase in the cross-plane thermal conductivity between 7 nm and 585 nm flakes at 285 {deg}K. We attribute the large increase in thermal conductivity with increasing thickness to contributions from phonons with long mean free paths (MFPs), spanning many hundreds of nanometers in the thickest flakes. When planar twist interfaces are introduced into the crystal by mechanically stacking multiple thin flakes, the cross-plane thermal conductivity of the stack is found to be a factor of seven below that of individual flakes with similar total thickness, thus providing strong evidence that phonon scattering at twist boundaries limits the maximum phonon MFPs. These results improve our understanding of thermal transport in two-dimensional materials and have important implications for hBN integration in nanoelectronics.
Allotropes of carbon, such as diamond and graphene, are among the best conductors of heat. We monitored the evolution of thermal conductivity in thin graphite as a function of temperature and thickness and found an intimate link between high conducti vity, thickness, and phonon hydrodynamics. The room temperature in-plane thermal conductivity of 8.5-micrometer-thick graphite was 4300 watts per meter-kelvin-a value well above that for diamond and slightly larger than in isotopically purified graphene. Warming enhances thermal diffusivity across a wide temperature range, supporting partially hydrodynamic phonon flow. The enhancement of thermal conductivity that we observed with decreasing thickness points to a correlation between the out-of-plane momentum of phonons and the fraction of momentum relaxing collisions. We argue that this is due to the extreme phonon dispersion anisotropy in graphite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا