ﻻ يوجد ملخص باللغة العربية
We experimentally demonstrate the formation of room-temperature skyrmions with radii of about 25,nm in easy-plane anisotropy multilayers with interfacial Dzyaloshinskii-Moriya interaction (DMI). We detect the formation of individual magnetic skyrmions by magnetic force microscopy and find that the skyrmions are stable in out-of-plane fields up to about 200 mT. We determine the interlayer exchange coupling as well as the strength of the interfacial DMI. Additionally, we investigate the dynamic microwave spin excitations by broadband magnetic resonance spectroscopy. From the uniform Kittel mode we determine the magnetic anisotropy and low damping $alpha_{mathrm{G}} < 0.04$. We also find clear magnetic resonance signatures in the non-uniform (skyrmion) state. Our findings demonstrate that skyrmions in easy-plane multilayers are promising for spin-dynamical applications.
We demonstrate that chiral skyrmionic magnetization configurations can be found as the minimum energy state in B20 thin film materials with easy-plane magnetocrystalline anisotropy with an applied magnetic field perpendicular to the film plane. Our o
Non-collinear magnets exhibit a rich array of dynamic properties at microwave frequencies. They can host nanometre-scale topological textures known as skyrmions, whose spin resonances are expected to be highly sensitive to their local magnetic enviro
We describe epitaxial Ge/Si multilayers with cross-plane thermal conductivities which can be systematically reduced to exceptionally low values, as compared both with bulk and thin-film SiGe alloys of the same average concentration, by simply changin
Facing the ever-growing demand for data storage will most probably require a new paradigm. Magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-bas
Magnetic skyrmions are topologically stable spin swirling particle like entities which are appealing for next generation spintronic devices. The expected low critical current density for the motion of skyrmions makes them potential candidates for fut