ﻻ يوجد ملخص باللغة العربية
Single crystals of (Ca1-xLax)10(Pt3As8)(Fe2As2)5 (x = 0 to 0.182) superconductors have been grown and characterized by X-ray, microprobe, transport and thermodynamic measurements. Features in the magnetic susceptibility, specific heat and two kinks in the derivative of the electrical resistivity around 100 K in the x = 0 compound support the existence of decoupled structural and magnetic phase transitions. With La doping, the structural/magnetic phase transitions are suppressed and a half-dome of superconductivity with a maximal Tc around 26 K is observed in the temperature-concentration phase diagram.
Starting from a spin-fermion model for the cuprate superconductors, we obtain an effective interaction for the charge carriers by integrating out the spin degrees of freedom. Our model predicts a quantum critical point for the superconducting interac
Ca10(Pt3As8)(Fe2As2)5 is the parent compound for a class of Fe-based high-temperature superconductors where superconductivity with transition temperatures up to 30 K can be introduced by partial element substitution. We present a combined high-resolu
Taking the spin-fermion model as the starting point for describing the cuprate superconductors, we obtain an effective nonlinear sigma-field hamiltonian, which takes into account the effect of doping in the system. We obtain an expression for the spi
Here, we report an overview of the phase diagram of single layered and double layered Fe arsenide superconductors at high magnetic fields. Our systematic magnetotransport measurements of polycrystalline SmFeAsO$_{1-x}$F$_x$ at different doping levels
We present the first comprehensive derivation of the intrinsic electronic phase diagram of the iron-oxypnictide superconductors in the normal state based on the analysis of the electrical resistivity $rho$ of both LaFeAsO$_{1-x}$F$_x$ and SmFeAsO$_{1