ترغب بنشر مسار تعليمي؟ اضغط هنا

The intrinsic electronic phase diagram of iron-oxypnictide superconductors

187   0   0.0 ( 0 )
 نشر من قبل Christian Hess
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first comprehensive derivation of the intrinsic electronic phase diagram of the iron-oxypnictide superconductors in the normal state based on the analysis of the electrical resistivity $rho$ of both LaFeAsO$_{1-x}$F$_x$ and SmFeAsO$_{1-x}$F$_x$ for a wide range of doping. Our data give clear-cut evidence for unusual normal state properties in these new materials. In particular, the emergence of superconductivity at low doping levels is accompanied by distinct anomalous transport behavior in $rho$ of the normal state which is reminiscent of the spin density wave (SDW) signature in the parent material. At higher doping levels $rho$ of LaFeAsO$_{1-x}$F$_x$ shows a clear transition from this pseudogap-like behavior to Fermi liquid-like behavior, mimicking the phase diagram of the cuprates. Moreover, our data reveal a correlation between the strength of the anomalous features and the stability of the superconducting phase. The pseudogap-like features become stronger in SmFeAsO$_{1-x}$F$_x$ where superconductivity is enhanced and vanish when superconductivity is reduced in the doping region with Fermi liquid-like behavior.



قيم البحث

اقرأ أيضاً

Taking the spin-fermion model as the starting point for describing the cuprate superconductors, we obtain an effective nonlinear sigma-field hamiltonian, which takes into account the effect of doping in the system. We obtain an expression for the spi n-wave velocity as a function of the chemical potential. For appropriate values of the parameters we determine the antiferromagnetic phase diagram for the YBa$_2$Cu$_3$O$_{6+x}$ compound as a function of the dopant concentration in good agreement with the experimental data. Furthermore, our approach provides a unified description for the phase diagrams of the hole-doped and the electron doped compounds, which is consistent with the remarkable similarity between the phase diagrams of these compounds, since we have obtained the suppression of the antiferromagnetic phase as the modulus of the chemical potential increases. The aforementioned result then follows by considering positive values of the chemical potential related to the addition of holes to the system, while negative values correspond to the addition of electrons.
Here we establish a combined electronic phase diagram of isoelectronic FeSe1-xSx (0.19 > x > 0.0) and FeSe1-yTey (0.04 < y < 1.0) single crystals. The FeSe1-yTey crystals with y = 0.04 - 0.30 are grown by a hydrothermal ion-deintercalation (HID) meth od. Based on combined experiments of the specific heat, electrical transport, and angle-resolved photoemission spectroscopy, no signature of the tetragonal-symmetry-broken transition to orthorhombic (nematic) phase is observed in the HID FeSe1-yTey samples, as compared with the FeSe1-xSx samples showing this transition at Ts. A ubiquitous dip-like temperature dependence of the Hall coefficient is observed around a characteristic temperature T* in the tetragonal regimes, which is well above the superconducting transition. More importantly, we find that the superconducting transition temperature Tc is positively correlated with the Hall-dip temperature T* across the FeSe1-xSx and FeSe1-yTey systems, suggesting that the tetragonal background is a fundamental host for the superconductivity.
We report a sudden reversal in the pressure dependence of Tc in the iron-based superconductor RbFe2As2, at a critical pressure Pc = 11 kbar. Combined with our prior results on KFe2As2 and CsFe2As2, we find a universal V-shaped phase diagram for Tc vs P in these fully hole-doped 122 materials, when measured relative to the critical point (Pc, Tc). From measurements of the upper critical field Hc2(T) under pressure in KFe2As2 and RbFe2As2, we observe the same two-fold jump in (1/Tc)(-dHc2/dT) across Pc, compelling evidence for a sudden change in the structure of the superconducting gap. We argue that this change is due to a transition from one pairing state to another, with different symmetries on either side of Pc. We discuss a possible link between scattering and pairing, and a scenario where a d-wave state favored by high-Q scattering at low pressure changes to a state with s+- symmetry favored by low-Q scattering at high pressure.
460 - W.-L. Zhang , P. Richard , H. Ding 2014
We use polarization-resolved Raman spectroscopy to study the anisotropy of the electronic characteristics of the iron-pnictide parent compounds $A$Fe$_{2}$As$_{2}$ ($A$~=~Eu, Sr). We demonstrate that above the structural phase transition at Ts the dy namical anisotropic properties of the 122 compounds are governed by the emergence of $xy$-symmetry critical collective mode foretelling a condensation into a state with spontaneously broken four-fold symmetry at a temperature $T^{*}$. However, the modes critical slowing down is intervened by a structural transition at Ts, about 80~K above $T^{*}$, resulting in an anisotropic density wave state.
We propose that Resistivity Curvature Mapping (RCM) based on the in-plane resistivity data is a useful way to objectively draw an electronic phase diagrams of high-T_c cuprates, where various crossovers are important. In particular, the pseudogap cro ssover line can be conveniently determined by RCM. We show experimental phase diagrams obtained by RCM for Bi_{2}Sr_{2-z}La_{z}CuO_{6+delta}, La_{2-x}Sr_{x}CuO_{4}, and YBa_{2}Cu_{3}O_{y}, and demonstrate the universal nature of the pseudogap crossover. Intriguingly, the electronic crossover near optimum doping depicted by RCM appears to occur rather abruptly, suggesting that the quantum critical regime, if exists, must be very narrow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا