ترغب بنشر مسار تعليمي؟ اضغط هنا

High-field phase-diagram of Fe arsenide superconductors

136   0   0.0 ( 0 )
 نشر من قبل Luis Molinuevo Balicas Dr
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here, we report an overview of the phase diagram of single layered and double layered Fe arsenide superconductors at high magnetic fields. Our systematic magnetotransport measurements of polycrystalline SmFeAsO$_{1-x}$F$_x$ at different doping levels confirm the upward curvature of the upper critical magnetic field $H_{c2}(T)$ as a function of temperature $T$ defining the phase boundary between the superconducting and metallic states for crystallites with the ab planes oriented nearly perpendicular to the magnetic field. We further show from measurements on single crystals that this feature, which was interpreted in terms of the existence of two superconducting gaps, is ubiquitous among both series of single and double layered compounds. In all compounds explored by us the zero temperature upper critical field $H_{c2}(0)$, estimated either through the Ginzburg-Landau or the Werthamer-Helfand-Hohenberg single gap theories, strongly surpasses the weak coupling Pauli paramagnetic limiting field. This clearly indicates the strong coupling nature of the superconducting state and the importance of magnetic correlations for these materials. Our measurements indicate that the superconducting anisotropy, as estimated through the ratio of the effective masses $gamma = (m_c/m_{ab})^{1/2}$ for carriers moving along the c-axis and the ab planes, respectively, is relatively modest as compared to the high-$T_c$ cuprates, but it is temperature, field and even doping dependent. Finally, our preliminary estimations of the irreversibility field $H_m(T)$, separating the vortex-solid from the vortex-liquid phase in the single layered compounds, indicates that it is well described by the melting of a vortex lattice in a moderately anisotropic uniaxial superconductor.


قيم البحث

اقرأ أيضاً

Taking the spin-fermion model as the starting point for describing the cuprate superconductors, we obtain an effective nonlinear sigma-field hamiltonian, which takes into account the effect of doping in the system. We obtain an expression for the spi n-wave velocity as a function of the chemical potential. For appropriate values of the parameters we determine the antiferromagnetic phase diagram for the YBa$_2$Cu$_3$O$_{6+x}$ compound as a function of the dopant concentration in good agreement with the experimental data. Furthermore, our approach provides a unified description for the phase diagrams of the hole-doped and the electron doped compounds, which is consistent with the remarkable similarity between the phase diagrams of these compounds, since we have obtained the suppression of the antiferromagnetic phase as the modulus of the chemical potential increases. The aforementioned result then follows by considering positive values of the chemical potential related to the addition of holes to the system, while negative values correspond to the addition of electrons.
We report a genuine phase diagram for a disorder-free CuO_2 plane based on the precise evaluation of the local hole density (N_h) by site-selective Cu-NMR studies on five-layered high-Tc cuprates. It has been unraveled that (1) the antiferromagnetic metallic state (AFMM) is robust up to N_h=0.17, (2) the uniformly mixed phase of superconductivity (SC) and AFMM is realized at N_h< 0.17, (3) the tetracritical point for the AFMM/(AFMM+SC)/SC/PM(Paramagnetism) phases may be present at N_h=0.15 and T=75 K, (4) Tc is maximum close to a quantum critical point (QCP) at which the AFM order collapses, suggesting the intimate relationship between the high-Tc SC and the AFM order. The results presented here strongly suggest that the AFM interaction plays the vital role as the glue for the Cooper pairs, which will lead us to a genuine understanding of why the Tc of cuprate superconductors is so high.
Starting from a spin-fermion model for the cuprate superconductors, we obtain an effective interaction for the charge carriers by integrating out the spin degrees of freedom. Our model predicts a quantum critical point for the superconducting interac tion coupling, which sets up a threshold for the onset of superconductivity in the system. We show that the physical value of this coupling is below this threshold, thus explaining why there is no superconducting phase for the undoped system. Then, by including doping, we find a dome-shaped dependence of the critical temperature as charge carriers are added to the system, in agreement with the experimental phase diagram. The superconducting critical temperature is calculated without adjusting any free parameter and yields, at optimal doping $ T_c sim $ 45 K, which is comparable to the experimental data.
Platelet-like single crystals of the Ca(Fe1-xCox)2As2 series having lateral dimensions up to 15 mm and thickness up to 0.5 mm were obtained from the high temperature solution growth technique using Sn flux. Upon Co doping, the c-axis of the tetragona l unit cell decreases, while the a-axis shows a less significant variation. Pristine CaFe2As2 shows a combined spin-density-wave and structural transition near T = 166 K which gradually shifts to lower temperatures and splits with increasing Co-doping. Both transitions terminate abruptly at a critical Co-concentration of xc = 0.075. For x geq 0.05, superconductivity appears at low temperatures with a maximum transition temperature TC of around 20 K. The superconducting volume fraction increases with Co concentration up to x = 0.09 followed by a gradual decrease with further increase of the doping level. The electronic phase diagram of Ca(Fe1-xCox)2As2 (0 leq x leq 0.2) series is constructed from the magnetization and electric resistivity data. We show that the low-temperature superconducting properties of Co-doped CaFe2As2 differ considerably from those of BaFe2As2 reported previously. These differences seem to be related to the extreme pressure sensitivity of CaFe2As2 relative to its Ba counterpart.
159 - C. Hess , A. Kondrat , A. Narduzzo 2009
We present the first comprehensive derivation of the intrinsic electronic phase diagram of the iron-oxypnictide superconductors in the normal state based on the analysis of the electrical resistivity $rho$ of both LaFeAsO$_{1-x}$F$_x$ and SmFeAsO$_{1 -x}$F$_x$ for a wide range of doping. Our data give clear-cut evidence for unusual normal state properties in these new materials. In particular, the emergence of superconductivity at low doping levels is accompanied by distinct anomalous transport behavior in $rho$ of the normal state which is reminiscent of the spin density wave (SDW) signature in the parent material. At higher doping levels $rho$ of LaFeAsO$_{1-x}$F$_x$ shows a clear transition from this pseudogap-like behavior to Fermi liquid-like behavior, mimicking the phase diagram of the cuprates. Moreover, our data reveal a correlation between the strength of the anomalous features and the stability of the superconducting phase. The pseudogap-like features become stronger in SmFeAsO$_{1-x}$F$_x$ where superconductivity is enhanced and vanish when superconductivity is reduced in the doping region with Fermi liquid-like behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا