ترغب بنشر مسار تعليمي؟ اضغط هنا

Preparation of an emittance transfer experiment

184   0   0.0 ( 0 )
 نشر من قبل Chen Xiao
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Flat beams feature unequal emittances in the horizontal and vertical phase space. Those beams were created successfully in lepton machines. Although a number of applications will profit also from flat hadron beams, to our knowledge they have never been created systematically. Multi-turn injection schemes, spectrometers, and colliders will directly benefit from those beams. The present paper covers the preparation of the experimental proof of principle for flat hadron beam creation in a beam transport section. Detailed simulations of the experiment, based on charge state stripping inside of a solenoid [L. Groening, Phys. Rev. ST Accel. Beams 14, 064201 (2011)], are performed. The matrix formalism was benchmarked with tracking through three-dimensional magnetic field maps of solenoids. An error analysis targeting at investigation of the impact of machine errors on the round-to-flat beam transformation has been performed. The remarkable flexibility of the set-up w.r.t. decoupling is addressed, as it can provide an one-knob tool to set the horizontal and vertical emittance partitioning. Finally, the status of hardware design and production is given.



قيم البحث

اقرأ أيضاً

143 - G. Xia , M. Harvey , A. J. Murray 2014
Ultracold atom-based electron sources have recently been proposed as an alternative to the conventional photo-injectors or thermionic electron guns widely used in modern particle accelerators. The advantages of ultracold atom-based electron sources l ie in the fact that the electrons extracted from the plasma (created from near threshold photo-ionization of ultracold atoms) have a very low temperature, i.e. down to tens of Kelvin. Extraction of these electrons has the potential for producing very low emittance electron bunches. These features are crucial for the next generation of particle accelerators, including free electron lasers, plasma-based accelerators and future linear colliders. The source also has many potential direct applications, including ultrafast electron diffraction (UED) and electron microscopy, due to its intrinsically high coherence. In this paper, the basic mechanism of ultracold electron beam production is discussed and our new research facility for an ultracold, low emittance electron source is introduced. This source is based on a novel alternating current Magneto-Optical Trap (the AC-MOT). Detailed simulations for a proposed extraction system have shown that for a 1 pC bunch charge, a beam emittance of 0.35 mm mrad is obtainable, with a bunch length of 3 mm and energy spread 1 %.
351 - Lars Groening 2011
For injection of beams into circular machines with different horizontal and vertical emittance acceptance, the injection efficiency can be increased if these beams are flat, i.e. if they feature unequal transverse emittances. Generation of flat elect ron beams is well known and has been demonstrated already in beam experiments. It was proposed also for ion beams that were generated in an Electron Cyclotron-Resonance (ECR) source. We introduce an extension of the method to beams that underwent charge state stripping without requiring their generation inside an ECR source. Results from multi-particle simulations are presented to demonstrate the validity of the method.
The Muon Ionization Cooling Experiment (MICE) collaboration seeks to demonstrate the feasibility of ionization cooling, the technique by which it is proposed to cool the muon beam at a future neutrino factory or muon collider. The emittance is measur ed from an ensemble of muons assembled from those that pass through the experiment. A pure muon ensemble is selected using a particle-identification system that can reject efficiently both pions and electrons. The position and momentum of each muon are measured using a high-precision scintillating-fibre tracker in a 4,T solenoidal magnetic field. This paper presents the techniques used to reconstruct the phase-space distributions and reports the first particle-by-particle measurement of the emittance of the MICE Muon Beam as a function of muon-beam momentum.
Active plasma lensing is a compact technology for strong focusing of charged particle beams, which has gained considerable interest for use in novel accelerator schemes. While providing kT/m focusing gradients, active plasma lenses can have aberratio ns caused by a radially nonuniform plasma temperature profile, leading to degradation of the beam quality. We present the first direct measurement of this aberration, consistent with theory, and show that it can be fully suppressed by changing from a light gas species (helium) to a heavier gas species (argon). Based on this result, we demonstrate emittance preservation for an electron beam focused by an argon-filled active plasma lens.
The existence of a characteristic coherence length in FEL SASE Physics determines the independent lasing of different portions, namely the slices, of the electron bunch. Each slice may be characterized by different phase space properties (not necessa rily equal emittances and Twiss coefficients). This fact opens new questions on the concept of beam matching and how the various portions of the beam contribute to the performances of the output radiation, including those associated with the transverse coherence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا