ﻻ يوجد ملخص باللغة العربية
Flat beams feature unequal emittances in the horizontal and vertical phase space. Those beams were created successfully in lepton machines. Although a number of applications will profit also from flat hadron beams, to our knowledge they have never been created systematically. Multi-turn injection schemes, spectrometers, and colliders will directly benefit from those beams. The present paper covers the preparation of the experimental proof of principle for flat hadron beam creation in a beam transport section. Detailed simulations of the experiment, based on charge state stripping inside of a solenoid [L. Groening, Phys. Rev. ST Accel. Beams 14, 064201 (2011)], are performed. The matrix formalism was benchmarked with tracking through three-dimensional magnetic field maps of solenoids. An error analysis targeting at investigation of the impact of machine errors on the round-to-flat beam transformation has been performed. The remarkable flexibility of the set-up w.r.t. decoupling is addressed, as it can provide an one-knob tool to set the horizontal and vertical emittance partitioning. Finally, the status of hardware design and production is given.
Ultracold atom-based electron sources have recently been proposed as an alternative to the conventional photo-injectors or thermionic electron guns widely used in modern particle accelerators. The advantages of ultracold atom-based electron sources l
For injection of beams into circular machines with different horizontal and vertical emittance acceptance, the injection efficiency can be increased if these beams are flat, i.e. if they feature unequal transverse emittances. Generation of flat elect
The Muon Ionization Cooling Experiment (MICE) collaboration seeks to demonstrate the feasibility of ionization cooling, the technique by which it is proposed to cool the muon beam at a future neutrino factory or muon collider. The emittance is measur
Active plasma lensing is a compact technology for strong focusing of charged particle beams, which has gained considerable interest for use in novel accelerator schemes. While providing kT/m focusing gradients, active plasma lenses can have aberratio
The existence of a characteristic coherence length in FEL SASE Physics determines the independent lasing of different portions, namely the slices, of the electron bunch. Each slice may be characterized by different phase space properties (not necessa