ترغب بنشر مسار تعليمي؟ اضغط هنا

Emittance Preservation in an Aberration-Free Active Plasma Lens

123   0   0.0 ( 0 )
 نشر من قبل Carl A. Lindstr{\\o}m
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Active plasma lensing is a compact technology for strong focusing of charged particle beams, which has gained considerable interest for use in novel accelerator schemes. While providing kT/m focusing gradients, active plasma lenses can have aberrations caused by a radially nonuniform plasma temperature profile, leading to degradation of the beam quality. We present the first direct measurement of this aberration, consistent with theory, and show that it can be fully suppressed by changing from a light gas species (helium) to a heavier gas species (argon). Based on this result, we demonstrate emittance preservation for an electron beam focused by an argon-filled active plasma lens.

قيم البحث

اقرأ أيضاً

We investigate beam loading and emittance preservation for a high-charge electron beam being accelerated in quasi-linear plasma wakefields driven by a short proton beam. The structure of the studied wakefields are similar to those of a long, modulate d proton beam, such as the AWAKE proton driver. We show that by properly choosing the electron beam parameters and exploiting two well known effects, beam loading of the wakefield and full blow out of plasma electrons by the accelerated beam, the electron beam can gain large amounts of energy with a narrow final energy spread (%-level) and without significant emittance growth.
Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (RF) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by multiple orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dog-leg emittance exchange setup with a five cell RF deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of an EEX line with emittances differing by four orders of magnitude, textit{i.e.} an initial transverse emittance of 1~pm-rad is exchanged with a longitudinal emittance of 10~nm-rad.
140 - S.-Y. Kim , K. Moon , M. Chung 2021
An active plasma lens focuses the beam in both the horizontal and vertical planes simultaneously using a magnetic field generated by a discharge current through the plasma. A beam size of 5--10 $mu$m can be achieved using an focusing gradient on the order of 100 T/m. The active plasma lens is therefore an attractive element for plasma wakefield acceleration, because an ultra-small size of the witness electron beam is required for injection into the plasma wakefield to minimize emittance growth and to enhance the capturing efficiency. When the driving beam and witness electron beam co-propagate through the active plasma lens, interactions between the driving and witness beams and the plasma must be considered. In this paper, through particle-in-cell simulations, we discuss the possibility of using an active plasma lens for the final focusing of the electron beam in the presence of driving proton bunches. The beam parameters for AWAKE Run 2 are taken as an example for this type of application. It is confirmed that the amplitude of the plasma wakefield excited by proton bunches remains the same even after propagation through the active plasma lens. The emittance of the witness electron beam increases rapidly in the plasma density ramp regions of the lens. Nevertheless, when the witness electron beam has a charge of 100 pC, emittance of 10 mm mrad, and bunch length of 60 $mu$m, its emittance growth is not significant along the active plasma lens. For small emittance, such as 2 mm mrad, the emittance growth is found to be strongly dependent on the plasma density.
125 - K.N. Sjobak , E. Adli , R. Corsini 2020
Active plasma lenses are compact devices developed as a promising beam-focusing alternative for charged particle beams, capable of short focal lengths for high-energy beams. We have previously shown that linear magnetic fields with gradients of aroun d 0.3 kT/m can be achieved in argon-filled plasma lenses that preserve beam emittance [C.A. Lindstr{o}m et al., Phys. Rev. Lett. 121, 194801 (2018)]. Here we show that with argon in a 500 {mu}m diameter capillary, the fields are still linear with a focusing gradient of 3.6 kT/m, which is an order of magnitude higher than the gradients of quadrupole magnets. The current pulses that generate the magnetic field are provided by compact Marx banks, and are highly repeatable. These results establish active plasma lenses as an ideal device for pulsed particle beam applications requiring very high focusing gradients that are uniform throughout the lens aperture.
We discuss the physics of a microbunched electron beam kicked by the dipole field of a corrector magnet by describing the kinematics of coherent undulator radiation after the kick. Particle tracking shows that the electron beam direction changes afte r the kick, while the orientation of the microbunching wavefront stays unvaried. Therefore, electrons motion and wavefront normal have different directions. Coherent radiation emission in a downstream undulator is expected to be dramatically suppressed as soon as the kick angle becomes larger than the divergence of the output radiation. In fact, according to conventional treatments, coherent radiation is emitted along the normal to the microbunching wavefront. Here we show that kinematics predicts a surprising effect. Namely, a description of coherent undulator radiation in the laboratory frame yields the radical notion that, due light aberration, strong coherent radiation is produced along the direction of the kick. We hold a recent FEL study made at the LCLS as a direct experimental evidence that coherent undulator radiation can be kicked by an angle of about five times the rms radiation divergence without suppression. We put forward our kinematical description of this experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا