ترغب بنشر مسار تعليمي؟ اضغط هنا

Associated 21-cm absorption towards the cores of radio galaxies

147   0   0.0 ( 0 )
 نشر من قبل Yogesh Chandola
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of Giant Metrewave Radio Telescope (GMRT) observations to detect H{sc i} in absorption towards the cores of a sample of radio galaxies. From observations of a sample of 16 sources, we detect H{sc i} in absorption towards the core of only one source, the FR,II radio galaxy 3C,452 which has been reported earlier by Gupta & Saikia (2006a). In this paper we present the results for the remaining sources which have been observed to a similar optical depth as for a comparison sample of compact steep-spectrum (CSS) and giga-hertz peaked spectrum (GPS) sources. We also compile available information on H{sc i} absorption towards the cores of extended radio sources observed with angular resolutions of a few arcsec or better. The fraction of extended sources with detection of H{sc i} absorption towards their cores is significantly smaller (7/47) than the fraction of H{sc i} detection towards CSS and GPS objects (28/49). For the cores of extended sources, there is no evidence of a significant correlation between H{sc i} column density towards the cores and the largest linear size of the sources. The distribution of the relative velocity of the principal absorbing component towards the cores of extended sources is not significantly different from that of the CSS and GPS objects. However, a few of the CSS and GPS objects have blue-shifted components $gapp$1000 km s$^{-1}$, possibly due to jet-cloud interactions. With the small number of detections towards cores, the difference in detection rate between FR,I (4/32) and FR,II (3/15) sources is within the statistical uncertainties.



قيم البحث

اقرأ أيضاً

130 - J. R. Allison 2012
We present results from a search for 21 cm associated HI absorption in a sample of 29 radio sources selected from the Australia Telescope 20 GHz survey. Observations were conducted using the Australia Telescope Compact Array Broadband Backend, with w hich we can simultaneously look for 21 cm absorption in a redshift range of 0.04 < z < 0.08, with a velocity resolution of 7 km/s . In preparation for future large-scale H I absorption surveys we test a spectral-line finding method based on Bayesian inference. We use this to assign significance to our detections and to determine the best-fitting number of spectral-line components. We find that the automated spectral-line search is limited by residuals in the continuum, both from the band-pass calibration and spectral-ripple subtraction, at spectral-line widths of Deltav_FWHM > 103 km/s . Using this technique we detect two new absorbers and a third, previously known, yielding a 10 per cent detection rate. Of the detections, the spectral-line profiles are consistent with the theory that we are seeing different orientations of the absorbing gas, in both the host galaxy and circumnuclear disc, with respect to our line-of-sight to the source. In order to spatially resolve the spectral-line components in the two new detections, and so verify this conclusion, we require further high-resolution 21 cm observations (~0.01 arcsec) using very long baseline interferometry.
75 - Fulvio Melia 2021
The EDGES collaboration has reported the detection of a global 21-cm signal with a plateau centered at 76 MHz (i.e., redshift 17.2), with an amplitude of 500^(+200)_(-500) mK. This anomalous measurement does not comport with standard cosmology, which can only accommodate an amplitude < 230 mK. Nevertheless, the line profiles redshift range (15 < z < 20) suggests a possible link to Pop III star formation and an implied evolution out of the `dark ages. Given this tension with the standard model, we here examine whether the observed 21-cm signal is instead consistent with the results of recent modeling based on the alternative Friedmann-Lemaitre-Robertson-Walker cosmology known as the R_h=ct universe, showing that--in this model--the CMB radiation might have been rethermalized by dust ejected into the IGM by the first-generation stars at redshift z < 16. We find that the requirements for this process to have occurred would have self-consistently established an equilibrium spin temperature T_s~3.4 K in the neutral hydrogen, via the irradiation of the IGM by deep penetrating X-rays emitted at the termination shocks of Pop III supernova remnants. Such a dust scenario has been strongly ruled out for the standard model, so the spin temperature (~3.3 K) inferred from the 21-cm absorption feature appears to be much more consistent with the R_h=ct profile than that implied by LCDM, for which adiabatic cooling would have established a spin temperature T_s(z=17.2)~6 K.
The star-forming reservoir in the distant Universe can be detected through HI 21-cm absorption arising from either cool gas associated with a radio source or from within a galaxy intervening the sight-line to the continuum source. In order to test wh ether the nature of the absorber can be predicted from the profile shape, we have compiled and analysed all of the known redshifted (z > 0.1) HI 21-cm absorption profiles. Although between individual spectra there is too much variation to assign a typical spectral profile, we confirm that associated absorption profiles are on average, wider than their intervening counterparts. It is widely hypothesised that this is due to high velocity nuclear gas feeding the central engine, absent in the more quiescent intervening absorbers. Modelling the column density distribution of the mean associated and intervening spectra, we confirm that the additional low optical depth, wide dispersion component, typical of associated absorbers, arises from gas within the inner parsec. With regard to the potential of predicting the absorber type in the absence of optical spectroscopy, we have implemented machine learning techniques to the 55 associated and 43 intervening spectra, with each of the tested models giving a >80% accuracy in the prediction of the absorber type. Given the impracticability of follow-up optical spectroscopy of the large number of 21-cm detections expected from the next generation of large radio telescopes, this could provide a powerful new technique with which to determine the nature of the absorbing galaxy.
We have undertaken a survey for HI 21-cm absorption within the host galaxies of z ~ 1.2 - 1.5 radio sources, in the search of the cool neutral gas currently missing at z > 1. This deficit is believed to be due to the optical selection of high redshif t objects biasing surveys towards sources of sufficient ultra-violet luminosity to ionise all of the gas in the surrounding galaxy. In order to avoid this bias, we have selected objects above blue magnitudes of B~20, indicating ultra-violet luminosities below the critical value above which 21-cm has never been detected. As a secondary requirement to the radio flux and faint optical magnitude, we shortlist targets with radio spectra suggestive of compact sources, in order to maximise the coverage of background emission. From this, we obtain one detection out of ten sources searched, which at z=1.278 is the third highest redshift detection of associated 21-cm absorption to date. Accounting for the spectra compromised by radio frequency interference, as well as various other possible pitfalls (reliable optical redshifts and turnover frequencies indicative of compact emission), we estimate a detection rate of ~30%, close to that expected for L_UV < 1e23 W/Hz sources.
68 - S. J. Curran 2021
In a previous paper we presented the results of applying machine learning to classify whether an HI 21-cm absorption spectrum arises in a source intervening the sight-line to a more distant radio source or within the host of the radio source itself. This is usually determined from an optical spectrum giving the source redshift. However, not only will this be impractical for the large number of sources expected to be detected with the Square Kilometre Array, but bright optical sources are the most ultra-violet luminous at high redshift and so bias against the detection of cool, neutral gas. Adding another 44, mostly newly detected absorbers, to the previous sample of 92, we test four different machine learning algorithms, again using the line properties (width, depth and number of Gaussian fits) as features. Of these algorithms, three gave a some improvement over the previous sample, with a logistic regression model giving the best results. This suggests that the inclusion of further training data, as new absorbers are detected, will further increase the prediction accuracy above the current 80%. We use the logistic regression model to classify the z = 0.42 absorption towards PKS 1657-298 and find this to be associated, which is consistent with a previous study which determined a similar redshift from the K-band magnitude-redshift relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا