ترغب بنشر مسار تعليمي؟ اضغط هنا

Intervening or associated? Machine learning classification of redshifted H I 21-cm absorption

69   0   0.0 ( 0 )
 نشر من قبل Stephen Curran Dr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. J. Curran




اسأل ChatGPT حول البحث

In a previous paper we presented the results of applying machine learning to classify whether an HI 21-cm absorption spectrum arises in a source intervening the sight-line to a more distant radio source or within the host of the radio source itself. This is usually determined from an optical spectrum giving the source redshift. However, not only will this be impractical for the large number of sources expected to be detected with the Square Kilometre Array, but bright optical sources are the most ultra-violet luminous at high redshift and so bias against the detection of cool, neutral gas. Adding another 44, mostly newly detected absorbers, to the previous sample of 92, we test four different machine learning algorithms, again using the line properties (width, depth and number of Gaussian fits) as features. Of these algorithms, three gave a some improvement over the previous sample, with a logistic regression model giving the best results. This suggests that the inclusion of further training data, as new absorbers are detected, will further increase the prediction accuracy above the current 80%. We use the logistic regression model to classify the z = 0.42 absorption towards PKS 1657-298 and find this to be associated, which is consistent with a previous study which determined a similar redshift from the K-band magnitude-redshift relation.

قيم البحث

اقرأ أيضاً

The star-forming reservoir in the distant Universe can be detected through HI 21-cm absorption arising from either cool gas associated with a radio source or from within a galaxy intervening the sight-line to the continuum source. In order to test wh ether the nature of the absorber can be predicted from the profile shape, we have compiled and analysed all of the known redshifted (z > 0.1) HI 21-cm absorption profiles. Although between individual spectra there is too much variation to assign a typical spectral profile, we confirm that associated absorption profiles are on average, wider than their intervening counterparts. It is widely hypothesised that this is due to high velocity nuclear gas feeding the central engine, absent in the more quiescent intervening absorbers. Modelling the column density distribution of the mean associated and intervening spectra, we confirm that the additional low optical depth, wide dispersion component, typical of associated absorbers, arises from gas within the inner parsec. With regard to the potential of predicting the absorber type in the absence of optical spectroscopy, we have implemented machine learning techniques to the 55 associated and 43 intervening spectra, with each of the tested models giving a >80% accuracy in the prediction of the absorber type. Given the impracticability of follow-up optical spectroscopy of the large number of 21-cm detections expected from the next generation of large radio telescopes, this could provide a powerful new technique with which to determine the nature of the absorbing galaxy.
Detection of 21~cm emission of HI from the epoch of reionization, at redshifts z>6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum techniq ue that maps the measurements to foreground object locations through signal delays between antenna pairs. We demonstrate interferometric measurements are inherently sensitive to all scales, including the largest angular scales, owing to the nature of wide-field measurements. These wide-field effects are generic to all observations but antenna shapes impact their amplitudes substantially. A dish-shaped antenna yields the most desirable features from a foreground contamination viewpoint, relative to a dipole or a phased array. Comparing data from recent Murchison Widefield Array observations, we demonstrate that the foreground signatures that have the largest impact on the HI signal arise from power received far away from the primary field of view. We identify diffuse emission near the horizon as a significant contributing factor, even on wide antenna spacings that usually represent structures on small scales. For signals entering through the primary field of view, compact emission dominates the foreground contamination. These two mechanisms imprint a characteristic pitchfork signature on the foreground wedge in Fourier delay space. Based on these results, we propose that selective down-weighting of data based on antenna spacing and time can mitigate foreground contamination substantially by a factor ~100 with negligible loss of sensitivity.
We report the first detections of associated H{sc i} 21,cm absorption in Gigahertz-peaked-spectrum (GPS) sources at high redshifts, $z > 1$, using the Giant Metrewave Radio Telescope (GMRT). Our GMRT search for associated H{sc i} 21,cm absorption in a sample of 12 GPS sources yielded two new detections of absorption, towards TXS~1200+045 at $z = 1.226$ and TXS~1245$-$197 at $z = 1.275$, and five non-detections. These are only the sixth and seventh detections of associated H{sc i} 21,cm absorption in active galactic nuclei (AGNs) at $z > 1$. Both H{sc i} 21,cm absorption profiles are wide, with velocity spans between nulls of $approx 600$~km~s$^{-1}$ (TXS~1200+045) and $approx 1100$~km~s$^{-1}$ (TXS~1245$-$197). In both absorbers, the large velocity spread of the absorption and its blueshift from the AGN, suggests that it arises in outflowing neutral gas, perhaps driven by the radio jets to high velocities. We derive mass outflow rates of ${dot M} approx 32 ; {rm M}_odot$~yr$^{-1}$ (TXS~1200+045) and ${dot M} approx 18 ; {rm M}_odot$~yr$^{-1}$ (TXS~1245$-$197), comparable to the mass outflow rates seen earlier in low-redshift active galactic nuclei.
We present the results of Giant Metrewave Radio Telescope (GMRT) observations to detect H{sc i} in absorption towards the cores of a sample of radio galaxies. From observations of a sample of 16 sources, we detect H{sc i} in absorption towards the co re of only one source, the FR,II radio galaxy 3C,452 which has been reported earlier by Gupta & Saikia (2006a). In this paper we present the results for the remaining sources which have been observed to a similar optical depth as for a comparison sample of compact steep-spectrum (CSS) and giga-hertz peaked spectrum (GPS) sources. We also compile available information on H{sc i} absorption towards the cores of extended radio sources observed with angular resolutions of a few arcsec or better. The fraction of extended sources with detection of H{sc i} absorption towards their cores is significantly smaller (7/47) than the fraction of H{sc i} detection towards CSS and GPS objects (28/49). For the cores of extended sources, there is no evidence of a significant correlation between H{sc i} column density towards the cores and the largest linear size of the sources. The distribution of the relative velocity of the principal absorbing component towards the cores of extended sources is not significantly different from that of the CSS and GPS objects. However, a few of the CSS and GPS objects have blue-shifted components $gapp$1000 km s$^{-1}$, possibly due to jet-cloud interactions. With the small number of detections towards cores, the difference in detection rate between FR,I (4/32) and FR,II (3/15) sources is within the statistical uncertainties.
The reionization of the Universe, it is believed, occurred by the growth of ionized regions (bubbles) in the neutral intergalactic medium (IGM). We study the possibility of detecting these bubbles in radio-interferometric observations of redshifted n eutral hydrogen (HI) 21 cm radiation. The signal 1 mJy will be buried in noise and foregrounds, the latter being at least a few orders of magnitude stronger than the signal. We develop a visibility based formalism that uses a filter to optimally combine the entire signal from a bubble while minimizing the noise and foreground contributions. This formalism makes definite predictions on the ability to detect an ionized bubble or conclusively rule out its presence in a radio- interferometric observation. We make predictions for the currently functioning GMRT and a forthcoming instrument, the MWA at a frequency of 150 MHz (corresponding to a redshift of 8.5). For both instruments, we show that a 3 sigma detection will be possible for a bubble of comoving radius R_b > 40 Mpc (assuming it to be spherical) in 100 hrs of observation and R_b 22 Mpc in 1000 hrs of observation, provided the bubble is at the center of the field of view. In both these cases the filter effectively removes the expected foreground contribution so that it is below the signal, and the system noise is the deciding criteria. We find that there is a fundamental limitation on the smallest bubble that can be detected arising from the statistical fluctuations in the HI distribution. Assuming that the HI traces the dark matter we find that it will not be possible to detect bubbles with R_b < 8 Mpc using the GMRT and R_b < 16 Mpc using the MWA, however large be the integration time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا