ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase reddening on near-Earth asteroids: Implications for mineralogical analysis, space weathering and taxonomic classification

279   0   0.0 ( 0 )
 نشر من قبل Juan Sanchez
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phase reddening is an effect that produces an increase of the spectral slope and variations in the strength of the absorption bands as the phase angle increases. In order to understand its effect on spectroscopic observations of asteroids, we have analyzed the visible and near-infrared spectra (0.45-2.5 mu m) of 12 near-Earth asteroids observed at different phase angles. All these asteroids are classified as either S-complex or Q-type asteroids. In addition, we have acquired laboratory spectra of three different types of ordinary chondrites at phase angles ranging from 13degree to 120degree. We have found that both asteroid and meteorite spectra show an increase in band depths with increasing phase angle. The spectral slope of the ordinary chondrites spectra shows a significant increase with increasing phase angle for g > 30degree. Variations in band centers and band area ratio (BAR) values were also found, however they seems to have no significant impact on the mineralogical analysis. Our study showed that the increase in spectral slope caused by phase reddening is comparable to certain degree of space weathering. In particular, an increase in phase angle in the range of 30degree to 120degree will produce a reddening of the reflectance spectra equivalent to exposure times of ~ 0.1x10^6 to 1.3x10^6 years at about 1 AU from the Sun. Furthermore, we found that under some circumstances phase reddening could lead to an ambiguous taxonomic classification of asteroids.



قيم البحث

اقرأ أيضاً

In the past, constraining the surface composition of near-Earth asteroids (NEAs) has been difficult due to the lack of high quality near-IR spectral data (0.7-2.5 microns) that contain mineralogically diagnostic absorption bands. Here we present visi ble (0.43-0.95 microns) and near-infrared (0.7-2.5 microns) spectra of nine NEAs and five Mars-crossing asteroids (MCs). The studied NEAs are: 4055 Magellan, 19764 (2000 NF5), 89830 (2002 CE), 138404 (2000 HA24), 143381 (2003 BC21), 159609 (2002 AQ3), 164121 (2003 YT1), 241662 (2000 KO44) and 2007 ML13. The studied MCs are: 1656 Suomi, 2577 Litva, 5407 (1992 AX), 22449 Ottijeff and 47035 (1998 WS). The observations were conducted with the NTT at La Silla, Chile, the 2.2 m telescope at Calar Alto, Spain, and the IRTF on Mauna Kea, Hawaii. The taxonomic classification (Bus system) of asteroids showed that all observed MC asteroids belong to the S-complex, including the S, Sr and Sl classes. Seven of the NEAs belong to the S-complex, including the S, Sa, Sk and Sl classes, and two NEAs were classified as V-types. The classification of the NEA 164121 (2003 YT1) as a V-type was made on the basis of its near-infrared spectrum since no visible spectrum is available for this asteroid. A mineralogical analysis was performed on six of the asteroids (those for which near-IR spectra were obtained or previously available). We found that three asteroids (241662 (2000 KO44), 19764 (2000 NF5), 138404 (2000 HA24)) have mafic silicate compositions consistent with ordinary chondrites, while three others (4055 Magellan, 164121 (2003 YT1), 5407 (1992 AX)) are pyroxene-dominated basaltic achondrite assemblages. In the case of 5407 (1992 AX) we found that its basaltic surface composition contrasts its taxonomic classification as a S-type.
Analysis of laboratory experiments simulating space weathering optical effects on atmosphereless planetary bodies reveals that the time needed to alter the spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope o f an S-type asteroid is about ~ 0.1 Myr. The time required to reduce the visible albedo of samples to ~ 0.05 is ~ 1 Myr. Since both these timescales are much less than the average collisional lifetime of asteroids larger than several kilometers in size, numerous low-albedo asteroids having reddish spectra with subdued absorption bands should be observed instead of an S-type dominated population. It is not the case because asteroid surfaces cannot be considered as undisturbed, unlike laboratory samples. We have estimated the number of collisions occurring in the time of 105 yr between asteroids and projectiles of various sizes and show that impact-activated motions of regolith particles counteract the progress of optical maturation of asteroid surfaces. Continual rejuvenation of asteroid surfaces by impacts does not allow bodies with the ordinary chondrite composition to be masked among S asteroids. Spectroscopic analysis, using relatively invariant spectral parameters, such as band centers and band area ratios, can determine whether the surface of an S asteroid has chondritic composition or not. Differences in the environment of the main asteroid belt versus that at 1 AU, and the physical difference between the Moon and main belt asteroids (i.e., size) can account for the lack of lunar-type weathering on main belt asteroids.
223 - S. Marchi 2010
The majority of basaltic asteroids are found in the inner main belt, although a few have also been observed in the outer main belt and near-Earth space. These asteroids -referred to as V-types- have surface compositions that resemble that of the 530k m sized asteroid Vesta. Besides the compositional similarity, dynamical evidence also links many V-type asteroids to Vesta. Moreover, Vesta is one of the few asteroids to have been identified as source of specific classes of meteorites, the howardite, eucrite, diogenite achondrites (HEDs). Despite the general consensus on the outlined scenario, several questions remain unresolved. In particular, it is not clear if the observed spectral diversity among Vesta, V-types and HEDs is due to space weathering, as is thought to be the case for S-type asteroids. In this paper, SDSS photometry is used to address the question of whether the spectral diversity among candidate V-types and HEDs can be explained by space weathering. We show that visible spectral slopes of V-types are systematically redder with respect to HEDs, in a similar way to what is found for ordinary chondrite meteorites and S-types. On the assumption that space weathering is responsible for the slope mismatch, we estimated an upper limit for the reddening timescale of about 0.5Ga. Nevertheless, the observed slope mismatch between HEDs and V-types poses several puzzles to understanding its origin. The implication of our findings is also discussed in the light of Dawn mission to Vesta.
In the framework of a 30-night spectroscopic survey of small near-Earth asteroids (NEAs) we present new results regarding the identification of olivine-rich objects. The following NEAs were classified as A-type using visible spectra obtained with 3.6 m NTT telescope: (293726) 2007 RQ17, (444584) 2006 UK, 2012 NP, 2014 YS34, 2015 HB117, 2015 LH, 2015 TB179, 2015 TW144. We determined a relative abundance of $5.4% $ (8 out of 147 observed targets) A-types at hundred meter size range of NEAs population. The ratio is at least five times larger compared with the previously known A-types, which represent less than $sim1%$ of NEAs taxonomically classified. By taking into account that part of our targets may not be confirmed as olivine-rich asteroids by their near-infrared spectra, or they can have a nebular origin, our result provides an upper-limit estimation of mantle fragments at size ranges bellow 300m. Our findings are compared with the battered-to-bits scenario, claiming that at small sizes the olivine-rich objects should be more abundant when compared with basaltic and iron ones.
The Yarkovsky effect is a thermal process acting upon the orbits of small celestial bodies, which can cause these orbits to slowly expand or contract with time. The effect is subtle (da/dt ~ 10^-4 au/My for a 1 km diameter object) and is thus general ly difficult to measure. We analyzed both optical and radar astrometry for 600 near-Earth asteroids (NEAs) for the purpose of detecting and quantifying the Yarkovsky effect. We present 247 NEAs with measured drift rates, which is the largest published set of Yarkovsky detections. This large sample size provides an opportunity to examine the Yarkovsky effect in a statistical manner. In particular, we describe two independent population-based tests that verify the measurement of Yarkovsky orbital drift. First, we provide observational confirmation for the Yarkovsky effects theoretical size dependence of 1/D, where D is diameter. Second, we find that the observed ratio of negative to positive drift rates in our sample is 2.34, which, accounting for bias and sampling uncertainty, implies an actual ratio of $2.7^{+0.3}_{-0.7}$. This ratio has a vanishingly small probability of occurring due to chance or statistical noise. The observed ratio of retrograde to prograde rotators is two times lower than the ratio expected from numerical predictions from NEA population studies and traditional assumptions about the sense of rotation of NEAs originating from various main belt escape routes. We also examine the efficiency with which solar energy is converted into orbital energy and find a median efficiency in our sample of 12%. We interpret this efficiency in terms of NEA spin and thermal properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا