ترغب بنشر مسار تعليمي؟ اضغط هنا

Space-Based Thermal Infrared Studies of Asteroids

104   0   0.0 ( 0 )
 نشر من قبل A. Mainzer
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-area surveys operating at mid-infrared wavelengths have proven to be a valuable means of discovering and characterizing minor planets. Through the use of radiometric models, it is possible to derive physical properties such as diameters, albedos, and thermal inertia for large numbers of objects. Modern detector array technology has resulted in a significant improvement in spatial resolution and sensitivity compared with previous generations of space-based infrared telescopes, giving rise to a commensurate increase in the number of objects that have been observed at these wavelengths. Space-based infrared surveys of asteroids therefore offer an effective means of rapidly gathering information about small body populations orbital and physical properties. The AKARI, WISE/NEOWISE, Spitzer, and Herschel missions have significantly increased the number of minor planets with well-determined diameters and albedos.

قيم البحث

اقرأ أيضاً

Analysis of laboratory experiments simulating space weathering optical effects on atmosphereless planetary bodies reveals that the time needed to alter the spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope o f an S-type asteroid is about ~ 0.1 Myr. The time required to reduce the visible albedo of samples to ~ 0.05 is ~ 1 Myr. Since both these timescales are much less than the average collisional lifetime of asteroids larger than several kilometers in size, numerous low-albedo asteroids having reddish spectra with subdued absorption bands should be observed instead of an S-type dominated population. It is not the case because asteroid surfaces cannot be considered as undisturbed, unlike laboratory samples. We have estimated the number of collisions occurring in the time of 105 yr between asteroids and projectiles of various sizes and show that impact-activated motions of regolith particles counteract the progress of optical maturation of asteroid surfaces. Continual rejuvenation of asteroid surfaces by impacts does not allow bodies with the ordinary chondrite composition to be masked among S asteroids. Spectroscopic analysis, using relatively invariant spectral parameters, such as band centers and band area ratios, can determine whether the surface of an S asteroid has chondritic composition or not. Differences in the environment of the main asteroid belt versus that at 1 AU, and the physical difference between the Moon and main belt asteroids (i.e., size) can account for the lack of lunar-type weathering on main belt asteroids.
83 - A. Mainzer , T. Grav , J. Masiero 2011
The NEOWISE dataset offers the opportunity to study the variations in albedo for asteroid classification schemes based on visible and near-infrared observations for a large sample of minor planets. We have determined the albedos for nearly 1900 aster oids classified by the Tholen, Bus and Bus-DeMeo taxonomic classification schemes. We find that the S-complex spans a broad range of bright albedos, partially overlapping the low albedo C-complex at small sizes. As expected, the X-complex covers a wide range of albedos. The multi-wavelength infrared coverage provided by NEOWISE allows determination of the reflectivity at 3.4 and 4.6 $mu$m relative to the visible albedo. The direct computation of the reflectivity at 3.4 and 4.6 $mu$m enables a new means of comparing the various taxonomic classes. Although C, B, D and T asteroids all have similarly low visible albedos, the D and T types can be distinguished from the C and B types by examining their relative reflectance at 3.4 and 4.6 $mu$m. All of the albedo distributions are strongly affected by selection biases against small, low albedo objects, as all objects selected for taxonomic classification were chosen according to their visible light brightness. Due to these strong selection biases, we are unable to determine whether or not there are correlations between size, albedo and space weathering. We argue that the current set of classified asteroids makes any such correlations difficult to verify. A sample of taxonomically classified asteroids drawn without significant albedo bias is needed in order to perform such an analysis.
The James Webb Space Telescope (JWST) provides the opportunity for ground-breaking observations of asteroids. It covers wavelength regions that are unavailable from the ground, and does so with unprecedented sensitivity. The main-belt and Trojan aste roids are all observable at some point in the JWST lifetime. We present an overview of the capabilities for JWST and how they apply to the asteroids as well as some short science cases that take advantage of these capabilities.
In its 16 years of scientific measurements, the Spitzer Space Telescope performed a number of ground-breaking infrared measurements of Solar System objects. In this second of two papers, we describe results from Spitzer observations of asteroids, dus t rings, and planets that provide new insight into the formation and evolution of our Solar System. The key Spitzer results presented here can be grouped into three broad classes: characterizing the physical properties of asteroids, notably including a large survey of Near Earth Objects; detection and characterization of several dust/debris disks in the Solar System; and comprehensive characterization of ice giant (Uranus, Neptune) atmospheres. Many of these observations provide critical foundations for future infrared space-based observations.
187 - S. Marchi 2010
The majority of basaltic asteroids are found in the inner main belt, although a few have also been observed in the outer main belt and near-Earth space. These asteroids -referred to as V-types- have surface compositions that resemble that of the 530k m sized asteroid Vesta. Besides the compositional similarity, dynamical evidence also links many V-type asteroids to Vesta. Moreover, Vesta is one of the few asteroids to have been identified as source of specific classes of meteorites, the howardite, eucrite, diogenite achondrites (HEDs). Despite the general consensus on the outlined scenario, several questions remain unresolved. In particular, it is not clear if the observed spectral diversity among Vesta, V-types and HEDs is due to space weathering, as is thought to be the case for S-type asteroids. In this paper, SDSS photometry is used to address the question of whether the spectral diversity among candidate V-types and HEDs can be explained by space weathering. We show that visible spectral slopes of V-types are systematically redder with respect to HEDs, in a similar way to what is found for ordinary chondrite meteorites and S-types. On the assumption that space weathering is responsible for the slope mismatch, we estimated an upper limit for the reddening timescale of about 0.5Ga. Nevertheless, the observed slope mismatch between HEDs and V-types poses several puzzles to understanding its origin. The implication of our findings is also discussed in the light of Dawn mission to Vesta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا