ﻻ يوجد ملخص باللغة العربية
We investigate $p$-orbital Bose-Einstein condensates in both the square and checkerboard lattice by numerically solving the Gross-Pitaevskii equation. The periodic potential for the latter lattice is taken exactly from the recent experiment [Nature Phys. 7, 147 (2011)]. It is confirmed that the staggered orbital-current state is the lowest-energy state in the $p$ band. Our numerical calculation further reveals that for both lattices the staggered $p$-orbital state suffers Landau instability but the situation is remarkably different for dynamical instability. A dynamically stable parameter region is found for the checkerboard lattice, but not for the square.
We investigate the quantum fluctuation effects in the vicinity of the critical point of a $p$-orbital bosonic system in a square optical lattice using Wilsonian renormalization group, where the $p$-orbital bosons condense at nonzero momenta and displ
We analyze time-of-flight absorption images obtained with dilute Bose-Einstein con-densates released from shaken optical lattices, both theoretically and experimentally. We argue that weakly interacting, ultracold quantum gases in kilohertz-driven op
Binary mixtures of Bose-Einstein condensates trapped in deep optical lattices and subjected to equal contributions of Rashba and Dresselhaus spin-orbit coupling (SOC), are investigated in the presence of a periodic time modulation of the Zeeman field
We investigate a Bose Einstein condensate held in a 1D optical lattice whose phase undergoes a fast oscillation using a statistical analysis. The averaged potential experienced by the atoms boils down to a periodic potential having the same spatial p
Vortex lattices in rapidly rotating Bose--Einstein condensates are systems of topological excitations that arrange themselves into periodic patterns. Here we show how phase-imprinting techniques can be used to create a controllable number of defects