ﻻ يوجد ملخص باللغة العربية
We provide a systematic effective lagrangian description of the phenomenology of the lightest top-partners in composite Higgs models. Our construction is based on symmetry, on selection rules and on plausible dynamical assumptions. The structure of the resulting simplified models depends on the quantum numbers of the lightest top partner and of the operators involved in the generation of the top Yukawa. In all cases the phenomenology is conveniently described by a small number of parameters, and the results of experimental searches are readily interpreted as a test of naturalness. We recast presently available experimental bounds on heavy fermions into bounds on top partners: LHC has already stepped well inside the natural region of parameter space.
In supersymmetric models with radiatively-driven naturalness and light higgsinos, the top squarks may lie in the 0.5- 3TeV range and thus only a fraction of natural parameter space is accessible to LHC searches. We outline the range of top squark and
Leptoquarks occur in many new physics scenarios and could be the next big discovery at the LHC. The purpose of this paper is to point out that a model-independent search strategy covering all possible leptoquarks is possible and has not yet been full
Leptoquarks have recently received much attention especially because they may provide an explanation to the $R_{D^{(*)}}$ and $R_{K^{(*)}}$ anomalies in rare $B$ meson decays. In a previous paper we proposed a systematic search strategy for all possi
We investigate a simplified model of dark matter where a Majorana fermion $chi$ coannihilates with a colored scalar top partner $tilde{t}$. We explore the cosmological history, with particular emphasis on the most relevant low-energy parameters: the
Fermionic third generation top partners are generic in composite Higgs models. They are likely to decay into third generation quarks and electroweak bosons. We propose a novel cut-and-count-style analysis in which we cross correlate the model-depende