ترغب بنشر مسار تعليمي؟ اضغط هنا

A First Top Partner Hunters Guide

128   0   0.0 ( 0 )
 نشر من قبل Andrea De Simone
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a systematic effective lagrangian description of the phenomenology of the lightest top-partners in composite Higgs models. Our construction is based on symmetry, on selection rules and on plausible dynamical assumptions. The structure of the resulting simplified models depends on the quantum numbers of the lightest top partner and of the operators involved in the generation of the top Yukawa. In all cases the phenomenology is conveniently described by a small number of parameters, and the results of experimental searches are readily interpreted as a test of naturalness. We recast presently available experimental bounds on heavy fermions into bounds on top partners: LHC has already stepped well inside the natural region of parameter space.



قيم البحث

اقرأ أيضاً

In supersymmetric models with radiatively-driven naturalness and light higgsinos, the top squarks may lie in the 0.5- 3TeV range and thus only a fraction of natural parameter space is accessible to LHC searches. We outline the range of top squark and lightest SUSY particle masses preferred by electroweak naturalness in the standard parameter space plane. We note that the branching fraction for b-> sgamma decay favors top squarks much heavier than 500 GeV. Such a range of top-squark mass values is in contrast to previous expectations where m(stop)<500 GeV had been considered natural. In radiative natural SUSY, top squarks decay roughly equally via t1-> bW1 and Z_{1,2} where W1 and Z_{1,2} are higgsino-like electroweak-inos. Thus, top squark pair production should yield all of tbar{t}+eslt, tbar{b}+eslt, bbar{t}+eslt and bbar{b}+eslt signatures at comparable rates. We propose that future LHC top squark searches take place within a semi-simplified model which corresponds more closely to expectations from theory.
Leptoquarks occur in many new physics scenarios and could be the next big discovery at the LHC. The purpose of this paper is to point out that a model-independent search strategy covering all possible leptoquarks is possible and has not yet been full y exploited. To be systematic we organize the possible leptoquark final states according to a leptoquark matrix with entries corresponding to nine experimentally distinguishable leptoquark decays: any of {light-jet, b-jet, top} with any of {neutrino, $e/mu$, $tau$}. The 9 possibilities can be explored in a largely model-independent fashion with pair-production of leptoquarks at the LHC. We review the status of experimental searches for the 9 components of the leptoquark matrix, pointing out which 3 have not been adequately covered. We plead that experimenters publish bounds on leptoquark cross sections as functions of mass for as wide a range of leptoquark masses as possible. Such bounds are essential for reliable recasts to general leptoquark models. To demonstrate the utility of the leptoquark matrix approach we collect and summarize searches with the same final states as leptoquark pair production and use them to derive bounds on a complete set of Minimal Leptoquark models which span all possible flavor and gauge representations for scalar and vector leptoquarks.
Leptoquarks have recently received much attention especially because they may provide an explanation to the $R_{D^{(*)}}$ and $R_{K^{(*)}}$ anomalies in rare $B$ meson decays. In a previous paper we proposed a systematic search strategy for all possi ble leptoquark flavors by focusing on leptoquark pair production. In this paper, we extend this strategy to large (order unity) leptoquark couplings which offer new search opportunities: single leptoquark production and $t$-channel leptoquark exchange with dilepton final states. We discuss the unique features of the different search channels and show that they cover complementary regions of parameter space. We collect and update all currently available bounds for the different flavor final states from LHC searches and from atomic parity violation measurements. As an application of our analysis, we find that current limits do not exclude the leptoquark explanation of the $B$ physics anomalies but that the high luminosity run of the LHC will reach the most interesting parameter space.
205 - A. Ibarra , A. Pierce , N. R. Shah 2015
We investigate a simplified model of dark matter where a Majorana fermion $chi$ coannihilates with a colored scalar top partner $tilde{t}$. We explore the cosmological history, with particular emphasis on the most relevant low-energy parameters: the mass splitting between the dark matter and the coannihilator, and the Yukawa coupling $y_chi$ that connects these fields to the Standard Model top quarks. We also allow a free quartic coupling $lambda_h$ between a pair of Higgs bosons and $tilde{t}$ pairs. We pay special attention to the case where the values take on those expected where $tilde{t}$ corresponds to the superpartner of the right-handed top, and $chi$ is a bino. Direct detection, indirect detection, and colliders are complementary probes of this simple model.
Fermionic third generation top partners are generic in composite Higgs models. They are likely to decay into third generation quarks and electroweak bosons. We propose a novel cut-and-count-style analysis in which we cross correlate the model-depende nt single and model-independent pair production processes for the top partners $X_{5/3}$ and $B$. In the class of composite Higgs models we study, $X_{5/3}$ is very special as it is the lightest exotic fermion. A constraint on the mass of $X_{5/3}$ directly extends to constrains on all top partner masses. By combining jet substructure methods with conventional reconstruction techniques we show that in this kind of final state a smooth interpolation between the boosted and unboosted regime is possible. We find that a reinterpretation of existing searches can improve bounds on the parameter space of composite Higgs models. Further, at 8 TeV a combined search for $X_{5/3}$ and $B$ in the $l+rm{jets}$ final state can be more sensitive than a search involving same-sign dileptons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا