ترغب بنشر مسار تعليمي؟ اضغط هنا

A top-squark hunters guide

282   0   0.0 ( 0 )
 نشر من قبل Howard Baer
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In supersymmetric models with radiatively-driven naturalness and light higgsinos, the top squarks may lie in the 0.5- 3TeV range and thus only a fraction of natural parameter space is accessible to LHC searches. We outline the range of top squark and lightest SUSY particle masses preferred by electroweak naturalness in the standard parameter space plane. We note that the branching fraction for b-> sgamma decay favors top squarks much heavier than 500 GeV. Such a range of top-squark mass values is in contrast to previous expectations where m(stop)<500 GeV had been considered natural. In radiative natural SUSY, top squarks decay roughly equally via t1-> bW1 and Z_{1,2} where W1 and Z_{1,2} are higgsino-like electroweak-inos. Thus, top squark pair production should yield all of tbar{t}+eslt, tbar{b}+eslt, bbar{t}+eslt and bbar{b}+eslt signatures at comparable rates. We propose that future LHC top squark searches take place within a semi-simplified model which corresponds more closely to expectations from theory.



قيم البحث

اقرأ أيضاً

We provide a systematic effective lagrangian description of the phenomenology of the lightest top-partners in composite Higgs models. Our construction is based on symmetry, on selection rules and on plausible dynamical assumptions. The structure of t he resulting simplified models depends on the quantum numbers of the lightest top partner and of the operators involved in the generation of the top Yukawa. In all cases the phenomenology is conveniently described by a small number of parameters, and the results of experimental searches are readily interpreted as a test of naturalness. We recast presently available experimental bounds on heavy fermions into bounds on top partners: LHC has already stepped well inside the natural region of parameter space.
Leptoquarks occur in many new physics scenarios and could be the next big discovery at the LHC. The purpose of this paper is to point out that a model-independent search strategy covering all possible leptoquarks is possible and has not yet been full y exploited. To be systematic we organize the possible leptoquark final states according to a leptoquark matrix with entries corresponding to nine experimentally distinguishable leptoquark decays: any of {light-jet, b-jet, top} with any of {neutrino, $e/mu$, $tau$}. The 9 possibilities can be explored in a largely model-independent fashion with pair-production of leptoquarks at the LHC. We review the status of experimental searches for the 9 components of the leptoquark matrix, pointing out which 3 have not been adequately covered. We plead that experimenters publish bounds on leptoquark cross sections as functions of mass for as wide a range of leptoquark masses as possible. Such bounds are essential for reliable recasts to general leptoquark models. To demonstrate the utility of the leptoquark matrix approach we collect and summarize searches with the same final states as leptoquark pair production and use them to derive bounds on a complete set of Minimal Leptoquark models which span all possible flavor and gauge representations for scalar and vector leptoquarks.
Leptoquarks have recently received much attention especially because they may provide an explanation to the $R_{D^{(*)}}$ and $R_{K^{(*)}}$ anomalies in rare $B$ meson decays. In a previous paper we proposed a systematic search strategy for all possi ble leptoquark flavors by focusing on leptoquark pair production. In this paper, we extend this strategy to large (order unity) leptoquark couplings which offer new search opportunities: single leptoquark production and $t$-channel leptoquark exchange with dilepton final states. We discuss the unique features of the different search channels and show that they cover complementary regions of parameter space. We collect and update all currently available bounds for the different flavor final states from LHC searches and from atomic parity violation measurements. As an application of our analysis, we find that current limits do not exclude the leptoquark explanation of the $B$ physics anomalies but that the high luminosity run of the LHC will reach the most interesting parameter space.
299 - W. Porod , T. Wohrmann 1996
Within the Minimal Supersymmetric Standard Model we study the three body decay of the lighter top squark into a b-quark, a W-boson and the lightest neutralino and compare this decay with the flavour changing two body decay of the lighter top squark i nto a c-quark and the lightest neutralino. We do this for scenarios where two body decays at tree level are forbidden for the light top squark. We give the complete analysis for the three body and compare it with the mentioned two body decay. We discuss our numerical results in view of the upgraded Tevatron, the LHC and a 500~GeV $e^+ e^-$ Linear Collider.
Studying superpartner production together with a hard initial state radiation (ISR) jet has been a useful strategy for searches of supersymmetry with a compressed spectrum at the Large Hadron Collider (LHC). In the case of the top squark (stop), the ratio of the missing transverse momentum from the lightest neutralinos and the ISR momentum, defined as $bar{R}_M$, turns out to be an effective variable to distinguish the signal from the backgrounds. It has helped to exclude the stop mass below 590 GeV along the top corridor where $m_{tilde{t}} - m_{tilde{chi}_1^0} approx m_t$. On the other hand, the current experimental limit is still rather weak in the $W$ corridor where $m_{tilde{t}} - m_{tilde{chi}_1^0} approx m_W +m_b$. In this work we extend this strategy to the parameter region around the $W$ corridor by considering the one lepton final state. In this case the kinematic constraints are insufficient to completely determine the neutrino momentum which is required to calculate $bar{R}_M$. However, the minimum value of $bar{R}_M$ consistent with the kinematic constraints still provides a useful discriminating variable, allowing the exclusion reach of the stop mass to be extended to $sim 550$ GeV based on the current 36 fb$^{-1}$ LHC data. The same method can also be applied to the chargino search with $m_{tilde{chi}_1^pm} -m_{tilde{chi}_1^0} approx m_W$ because the analysis does not rely on $b$ jets. If no excess is present in the current data, a chargino mass of 300 GeV along the $W$ corridor can be excluded, beyond the limit obtained from the multilepton search.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا