ترغب بنشر مسار تعليمي؟ اضغط هنا

Highly efficient heralding of entangled single photons

147   0   0.0 ( 0 )
 نشر من قبل Marissa Giustina
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83 %. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.



قيم البحث

اقرأ أيضاً

177 - T. Kuroda , T. Mano , N. Ha 2013
An ideal source of entangled photon pairs combines the perfect symmetry of an atom with the convenient electrical trigger of light sources based on semiconductor quantum dots. We create a naturally symmetric quantum dot cascade that emits highly enta ngled photon pairs on demand. Our source consists of strain-free GaAs dots self-assembled on a triangular symmetric (111)A surface. The emitted photons strongly violate Bells inequality and reveal a fidelity to the Bell state as high as 86 (+-2) % without postselection. This result is an important step towards scalable quantum-communication applications with efficient sources.
We present serial-parallel conversion for a heralded single photon source (heralded SPS). We theoretically show that with the heralding signal, the serial-parallel converter can route a stream of n photons to n different spatial modes more efficientl y than is the case without using a heralding signal. We also experimentally demonstrate serial-parallel conversion for two photons generated from a heralded SPS. We achieve a conversion efficiency of 0.533 pm 0.003, which exceeds the maximum achievable efficiency of 0.5 for serial-parallel conversion using unheralded photons, and is double the efficiency (0.25) for that using beamsplitters. When the losses in the optical converter are corrected for, the efficiency of the current setup can be increased up to 0.996 pm 0.006.
Efficient, high rate photon sources with high single photon purity are essential ingredients for quantum technologies. Single photon sources based on solid state emitters such as quantum dots are very advantageous for integrated photonic circuits, bu t they can suffer from a high two-photon emission probability, which in cases of non-cryogenic environment cannot be spectrally filtered. Here we propose two temporal purification-by-heralding methods for using a two photon emission process to yield highly pure and efficient single photon emission, bypassing the inherent problem of spectrally overlapping bi-photon emission. We experimentally demonstrate their feasibility on the emission from a single nanocrystal quantum dot, exhibiting single photon purities exceeding 99.5%, without a significant loss of single photon efficiency. These methods can be applied for any indeterministic source of spectrally broadband photon pairs.
Time-bin entangled photons are ideal for long-distance quantum communication via optical fibers. Here we present a source where, even at high creation rates, each excitation pulse generates at most one time-bin entangled pair. This is important for t he accuracy and security of quantum communication. Our site-controlled quantum dot generates single polarization-entangled photon pairs, which are then converted, without loss of entanglement strength, into single time-bin entangled photon pairs.
State-of-the-art quantum key distribution systems are based on the BB84 protocol and single photons generated by lasers. These implementations suffer from range limitations and security loopholes, which require expensive adaptation. The use of polari zation entangled photon pairs substantially alleviates the security threads while allowing for basically arbitrary transmission distances when embedded in quantum repeater schemes. Semiconductor quantum dots are capable of emitting highly entangled photon pairs with ultra-low multi-pair emission probability even at maximum brightness. Here we report on the first implementation of the BBM92 protocol using a quantum dot source with an entanglement fidelity as high as 0.97(1). For a proof of principle, the key generation is performed between two buildings, connected by 350 metre long fiber, resulting in an average key rate of 135 bits/s and a qubit error rate of 0.019 over a time span of 13 hours, without resorting to time- or frequency-filtering techniques. Our work demonstrates the viability of quantum dots as light sources for entanglement-based quantum key distribution and quantum networks. By embedding them in state-of-the-art photonic structures, key generation rates in the Gbit/s range are at reach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا