ترغب بنشر مسار تعليمي؟ اضغط هنا

Single pairs of time-bin entangled photons

105   0   0.0 ( 0 )
 نشر من قبل Marijn Versteegh
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Time-bin entangled photons are ideal for long-distance quantum communication via optical fibers. Here we present a source where, even at high creation rates, each excitation pulse generates at most one time-bin entangled pair. This is important for the accuracy and security of quantum communication. Our site-controlled quantum dot generates single polarization-entangled photon pairs, which are then converted, without loss of entanglement strength, into single time-bin entangled photon pairs.

قيم البحث

اقرأ أيضاً

Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fiber networks can be effectively used as a transport medi um. To achieve this goal, a source of robust entangled single photon pairs is required. While time-bin entanglement offers the required robustness, currently used parametric down-conversion sources have limited performance due to multi-pair contributions. We report the realization of a source of single time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyzed the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirmed the entanglement by performing a quantum state tomography of the emitted photons, which yielded a fidelity of 0.69(3) and a concurrence of 0.41(6).
Heralding techniques are useful in quantum communication to circumvent losses without resorting to error correction schemes or quantum repeaters. Such techniques are realized, for example, by monitoring for photon loss at the receiving end of the qua ntum link while not disturbing the transmitted quantum state. We describe and experimentally benchmark a scheme that incorporates error detection in a quantum channel connecting two transmon qubits using traveling microwave photons. This is achieved by encoding the quantum information as a time-bin superposition of a single photon, which simultaneously realizes high communication rates and high fidelities. The presented scheme is straightforward to implement in circuit QED and is fully microwave-controlled, making it an interesting candidate for future modular quantum computing architectures.
We report on the implementation of a new interferometric scheme that allows the generation of photon pairs entangled in the time-energy degree of freedom. This scheme does not require any kind of temporal post-selection on the generated pairs and can be used even with lasers with short coherence time.
Resonant excitation of the biexciton state in an InAsP quantum dot by a phase-coherent pair of picosecond pulses allows for preparing time-bin entangled pairs of photons via the biexciton-exciton cascade. We show that this scheme can be efficiently i mplemented for a dot embedded in an InP nanowire. The underlying physical mechanisms can be represented and quantitatively analyzed by an effective three-level open system master equation. Simulation parameters including decay and intensity depending dephasing rates are extracted from experimental data, which in turn allow for predicting the resulting entanglement and finding optimal operating conditions.
Efficient, high rate photon sources with high single photon purity are essential ingredients for quantum technologies. Single photon sources based on solid state emitters such as quantum dots are very advantageous for integrated photonic circuits, bu t they can suffer from a high two-photon emission probability, which in cases of non-cryogenic environment cannot be spectrally filtered. Here we propose two temporal purification-by-heralding methods for using a two photon emission process to yield highly pure and efficient single photon emission, bypassing the inherent problem of spectrally overlapping bi-photon emission. We experimentally demonstrate their feasibility on the emission from a single nanocrystal quantum dot, exhibiting single photon purities exceeding 99.5%, without a significant loss of single photon efficiency. These methods can be applied for any indeterministic source of spectrally broadband photon pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا