ﻻ يوجد ملخص باللغة العربية
We present serial-parallel conversion for a heralded single photon source (heralded SPS). We theoretically show that with the heralding signal, the serial-parallel converter can route a stream of n photons to n different spatial modes more efficiently than is the case without using a heralding signal. We also experimentally demonstrate serial-parallel conversion for two photons generated from a heralded SPS. We achieve a conversion efficiency of 0.533 pm 0.003, which exceeds the maximum achievable efficiency of 0.5 for serial-parallel conversion using unheralded photons, and is double the efficiency (0.25) for that using beamsplitters. When the losses in the optical converter are corrected for, the efficiency of the current setup can be increased up to 0.996 pm 0.006.
Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupl
Efficient, high rate photon sources with high single photon purity are essential ingredients for quantum technologies. Single photon sources based on solid state emitters such as quantum dots are very advantageous for integrated photonic circuits, bu
We experimentally study a fiber-based three-stage nonlinear interferometer and demonstrate its application in generating heralded single photons with high efficiency and purity by spectral engineering. We obtain a heralding efficiency of 90% at a bri
Photon pairs produced by parametric down-conversion or four-wave mixing can interfere with each other in multiport interferometers, or carry entanglement between distant nodes for use in entanglement swapping. This requires the photons be spectrally
On-demand indistinguishable single photon sources are essential for quantum networking and communication. Semiconductor quantum dots are among the most promising candidates, but their typical emission wavelength renders them unsuitable for use in fib