ﻻ يوجد ملخص باللغة العربية
We use hydrodynamical simulations from the OWLS project to investigate the dependence of the physical properties of galaxy populations at redshift 2 on the assumed star formation law, the equation of state imposed on the unresolved interstellar medium, the stellar initial mass function, the reionization history, and the assumed cosmology. This work complements that of Paper I, where we studied the effects of varying models for galactic winds driven by star formation and AGN. The normalisation of the matter power spectrum strongly affects the galaxy mass function, but has a relatively small effect on the physical properties of galaxies residing in haloes of a fixed mass. Reionization suppresses the stellar masses and gas fractions of low-mass galaxies, but by z = 2 the results are insensitive to the timing of reionization. The stellar initial mass function mainly determines the physical properties of galaxies through its effect on the efficiency of the feedback, while changes in the recycled mass and metal fractions play a smaller role. If we use a recipe for star formation that reproduces the observed star formation law independently of the assumed equation of state of the unresolved ISM, then the latter is unimportant. The star formation law, i.e. the gas consumption time scale as a function of surface density, determines the mass of dense, star-forming gas in galaxies, but affects neither the star formation rate nor the stellar mass. This can be understood in terms of self-regulation: the gas fraction adjusts until the outflow rate balances the inflow rate.
We use hydrodynamical simulations from the OWLS project to investigate the dependence of the physical properties of galaxy populations at redshift 2 on metal-line cooling and feedback from star formation and active galactic nuclei (AGN). We find that
We use the cosmo-OWLS suite of cosmological hydrodynamical simulations to investigate the scatter and evolution of the global hot gas properties of large simulated populations of galaxy groups and clusters. Our aim is to compare the predictions of di
We present observations of SPT-S J053816-5030.8, a gravitationally-lensed dusty star forming galaxy (DSFG) at z = 2.7817, first discovered at millimeter wavelengths by the South Pole Telescope. SPT 0538-50 is typical of the brightest sources found by
We analyze the physical conditions in the interstellar gas of 11 actively star-forming galaxies at z~2, based on integral-field spectroscopy from the ESO-VLT and HST/NICMOS imaging. We concentrate on the high H-alpha surface brightnesses, large line
We report the discovery and constrain the physical conditions of the interstellar medium of the highest-redshift millimeter-selected dusty star-forming galaxy (DSFG) to date, SPT-S J031132-5823.4 (hereafter SPT0311-58), at $z=6.900 +/- 0.002$. SPT031