ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical properties of simulated galaxy populations at z=2 - I. Effect of metal-line cooling and feedback from star formation and AGN

149   0   0.0 ( 0 )
 نشر من قبل Marcel Haas
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Marcel R. Haas




اسأل ChatGPT حول البحث

We use hydrodynamical simulations from the OWLS project to investigate the dependence of the physical properties of galaxy populations at redshift 2 on metal-line cooling and feedback from star formation and active galactic nuclei (AGN). We find that if the sub-grid feedback from star formation is implemented kinetically, the feedback is only efficient if the initial wind velocity exceeds a critical value. This critical velocity increases with galaxy mass and also if metal-line cooling is included. This suggests that radiative losses quench the winds if their initial velocity is too low. If the feedback is efficient, then the star formation rate is inversely proportional to the amount of energy injected per unit stellar mass formed (which is proportional to the initial mass loading for a fixed wind velocity). This can be understood if the star formation is self-regulating, i.e. if the star formation rate (and thus the gas fraction) increase until the outflow rate balances the inflow rate. Feedback from AGN is efficient at high masses, while increasing the initial wind velocity with gas pressure or halo mass allows one to generate galaxy-wide outflows at all masses. Matching the observed galaxy mass function requires efficient feedback. In particular, the predicted faint-end slope is too steep unless we resort to highly mass loaded winds for low-mass objects. Such efficient feedback from low-mass galaxies (M_* << 10^10 Msun) also reduces the discrepancy with the observed specific star formation rates, which are higher than predicted unless the feedback transitions from highly efficient to inefficient just below the observed stellar mass range.



قيم البحث

اقرأ أيضاً

81 - Marcel R. Haas 2012
We use hydrodynamical simulations from the OWLS project to investigate the dependence of the physical properties of galaxy populations at redshift 2 on the assumed star formation law, the equation of state imposed on the unresolved interstellar mediu m, the stellar initial mass function, the reionization history, and the assumed cosmology. This work complements that of Paper I, where we studied the effects of varying models for galactic winds driven by star formation and AGN. The normalisation of the matter power spectrum strongly affects the galaxy mass function, but has a relatively small effect on the physical properties of galaxies residing in haloes of a fixed mass. Reionization suppresses the stellar masses and gas fractions of low-mass galaxies, but by z = 2 the results are insensitive to the timing of reionization. The stellar initial mass function mainly determines the physical properties of galaxies through its effect on the efficiency of the feedback, while changes in the recycled mass and metal fractions play a smaller role. If we use a recipe for star formation that reproduces the observed star formation law independently of the assumed equation of state of the unresolved ISM, then the latter is unimportant. The star formation law, i.e. the gas consumption time scale as a function of surface density, determines the mass of dense, star-forming gas in galaxies, but affects neither the star formation rate nor the stellar mass. This can be understood in terms of self-regulation: the gas fraction adjusts until the outflow rate balances the inflow rate.
Using Chandra data for a sample of 26 galaxy groups, we constrained the central cooling times (CCTs) of the ICM and classified the groups as strong cool-core (SCC), weak cool-core (WCC) and non-cool-core (NCC) based on their CCTs. The total radio lum inosity of the brightest cluster galaxy (BCG) was obtained using radio catalog data and literature, which was compared to the CCT to understand the link between gas cooling and radio output. We determined K-band luminosities of the BCG with 2MASS data, and used it to constrain the masses of the SMBH, which were then compared to the radio output. We also tested for correlations between the BCG luminosity and the overall X-ray luminosity and mass of the group. The observed cool-core/non-cool-core fractions for groups are comparable to those of clusters. However, notable differences are seen. For clusters, all SCCs have a central temperature drop, but for groups, this is not the case as some SCCs have centrally rising temperature profiles. While for the cluster sample, all SCC clusters have a central radio source as opposed to only 45% of the NCCs, for the group sample, all NCC groups have a central radio source as opposed to 77% of the SCC groups. For clusters, there are indications of an anticorrelation trend between radio luminosity and CCT which is absent for the groups. Indications of a trend of radio luminosity with black hole mass observed in SCC clusters is absent for groups. The strong correlation observed between the BCG luminosity and the cluster X-ray luminosity/cluster mass weakens significantly for groups. We conclude that there are important differences between clusters and groups within the ICM cooling/AGN feedback paradigm.
We study the role of feedback from supernovae and black holes in the evolution of the star formation rate function (SFRF) of z~4-7 galaxies. We use a new set of cosmological hydrodynamic simulations, ANGUS (AustraliaN GADGET-3 early Universe Simulati ons), run with a modified and improved version of the parallel TreePM-smoothed particle hydrodynamics code GADGET-3 called P-GADGET3(XXL), that includes a self-consistent implementation of stellar evolution and metal enrichment. In our simulations both Supernova (SN) driven galactic winds and Active Galactic Nuclei (AGN) act simultaneously in a complex interplay. The SFRF is insensitive to feedback prescription at z>5, meaning that it cannot be used to discriminate between feedback models during reionisation. However, the SFRF is sensitive to the details of feedback prescription at lower redshift. By exploring different SN driven wind velocities and regimes for the AGN feedback, we find that the key factor for reproducing the observed SFRFs is a combination of strong SN winds and early AGN feedback in low mass galaxies. Conversely, we show that the choice of initial mass function and inclusion of metal cooling have less impact on the evolution of the SFRF. When variable winds are considered, we find that a non-aggressive wind scaling is needed to reproduce the SFRFs at z>4. Otherwise, the amount of objects with low SFRs is greatly suppressed and at the same time winds are not effective enough in the most massive systems.
We study a sample of 48127 galaxies selected from the SDSS MPA-JHU catalogue, with $log M_{star}/M_{odot} = 10.73 - 11.03$ and $z<0.1$. Local galaxies in this stellar mass range have been shown to have systematically shorter assembly times within the ir inner regions ($<0.5~R_{50}$) when compared to that of the galaxy as a whole, contrary to lower or higher mass galaxies which show consistent assembly times at all radii. Hence, we refer to these galaxies as Inside-Out Assembled Galaxy (IOAG) candidates. We find that the majority of IOAG candidates with well-detected emission lines are classified as either AGN (40%) or composite (40%) in the BPT diagram. We also find that the majority of our sources are located below the main sequence of star formation, and within the green valley or red sequence. Most BPT-classified star-forming IOAG candidates have spiral morphologies and are in the main sequence, whereas Seyfert 2 and composites have mostly spiral morphologies but quiescent star formation rates (SFRs). We argue that a high fraction of IOAG candidates seem to be in the process of quenching, moving from the blue cloud to the red sequence. Those classified as AGN have systematically lower SFRs than star-forming galaxies suggesting that AGN activity may be related to this quenching. However, the spiral morphology of these galaxies remains in place, suggesting that the central star-formation is suppressed before the morphological transformation occurs.
Population III stars are believed to have been more massive than typical stars today and to have formed in relative isolation. The thermodynamic impact of metals is expected to induce a transition leading to clustered, low-mass Population II star for mation. In this work, we present results from three cosmological simulations, only differing in gas metallicity, that focus on the impact of metal fine-structure line cooling on the formation of stellar clusters in a high-redshift atomic cooling halo. Introduction of sink particles allows us to follow the process of gas hydrodynamics and accretion onto cluster stars for 4 Myr corresponding to multiple local free-fall times. At metallicities at least $10^{-3}, Z_{odot}$, gas is able to reach the CMB temperature floor and fragment pervasively resulting in a stellar cluster of size $sim1$ pc and total mass $sim1000, M_{odot}$. The masses of individual sink particles vary, but are typically $sim100, M_{odot}$, consistent with the Jeans mass when gas cools to the CMB temperature, though some solar mass fragments are also produced. At the low metallicity of $10^{-4}, Z_{odot}$, fragmentation is completely suppressed on scales greater than 0.01 pc and total stellar mass is lower by a factor of 3 than in the higher metallicity simulations. The sink particle accretion rates, and thus their masses, are determined by the mass of the gravitationally unstable gas cloud and the prolonged gas accretion over many Myr. The simulations thus exhibit features of both monolithic collapse and competitive accretion. Even considering possible dust induced fragmentation that would occur at higher densities, the formation of a bona fide stellar cluster seems to require metal line cooling and metallicities of at least $10^{-3}, Z_{odot}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا