ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical conditions in the ISM of intensely star-forming galaxies at redshift~2

501   0   0.0 ( 0 )
 نشر من قبل Matthew D. Lehnert
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the physical conditions in the interstellar gas of 11 actively star-forming galaxies at z~2, based on integral-field spectroscopy from the ESO-VLT and HST/NICMOS imaging. We concentrate on the high H-alpha surface brightnesses, large line widths, line ratios and the clumpy nature of these galaxies. We show that photoionization calculations and emission line diagnostics imply gas pressures and densities that are similar to the most intense nearby star-forming regions at z=0 but over much larger scales (10-20 kpc). A relationship between surface brightness and velocity dispersion can be explained through simple energy injection arguments and a scaling set by nearby galaxies with no free parameters. The high velocity dispersions are a natural consequence of intense star formation thus regions of high velocity dispersion are not evidence for mass concentrations such as bulges or rings. External mechanisms like cosmological gas accretion generally do not have enough energy to sustain the high velocity dispersions. In some cases, the high pressures and low gas metallicites may make it difficult to robustly distinguish between AGN ionization cones and star formation, as we show for BzK-15504 at z=2.38. We construct a picture where the early stages of galaxy evolution are driven by self-gravity which powers strong turbulence until the velocity dispersion is high. Then massive, dense, gas-rich clumps collapse, triggering star formation with high efficiencies and intensities as observed. At this stage, the intense star formation is likely self-regulated by the mechanical energy output of massive stars.



قيم البحث

اقرأ أيضاً

We present observations of SPT-S J053816-5030.8, a gravitationally-lensed dusty star forming galaxy (DSFG) at z = 2.7817, first discovered at millimeter wavelengths by the South Pole Telescope. SPT 0538-50 is typical of the brightest sources found by wide-field millimeter-wavelength surveys, being lensed by an intervening galaxy at moderate redshift (in this instance, at z = 0.441). We present a wide array of multi-wavelength spectroscopic and photometric data on SPT 0538-50, including data from ALMA, Herschel PACS and SPIRE, Hubble, Spitzer, VLT, ATCA, APEX, and the SMA. We use high resolution imaging from HST to de-blend SPT 0538-50, separating DSFG emission from that of the foreground lens. Combined with a source model derived from ALMA imaging (which suggests a magnification factor of 21 +/- 4), we derive the intrinsic properties of SPT 0538-50, including the stellar mass, far-IR luminosity, star formation rate, molecular gas mass, and - using molecular line fluxes - the excitation conditions within the ISM. The derived physical properties argue that we are witnessing compact, merger-driven star formation in SPT 0538-50, similar to local starburst galaxies, and unlike that seen in some other DSFGs at this epoch.
We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at $zsim1.5$ in the Subaru Deep Field. These galaxies are selected as [OII]$lambda$3727 emitters at $zapprox$ 1.47 and 1.62 from narrow-band imaging. We detect H$alpha$ emission line in 115 galaxies, [OIII]$lambda$5007 emission line in 45 galaxies, and H$beta$, [NII]$lambda$6584, and [SII]$lambdalambda$6716,6731 in 13, 16, and 6 galaxies, respectively. Including the [OII] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at $zsim$1.5. We find a tight correlation between H$alpha$ and [OII], which suggests that [OII] can be a good star formation rate (SFR) indicator for galaxies at $zsim1.5$. The line ratios of H$alpha$/[OII] are consistent with those of local galaxies. We also find that [OII] emitters have strong [OIII] emission lines. The [OIII]/[OII] ratios are larger than normal star-forming galaxies in the local Universe, suggesting a higher ionization parameter. Less massive galaxies have larger [OIII]/[OII] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.
We present results on the properties of neon emission in $zsim2$ star-forming galaxies drawn from the MOSFIRE Deep Evolution Field (MOSDEF) survey. Doubly-ionized neon ([NeIII]3869) is detected at $geq3sigma$ in 61 galaxies, representing $sim$25% of the MOSDEF sample with H$alpha$, H$beta$, and [OIII]$5007$ detections at similar redshifts. We consider the neon emission-line properties of both individual galaxies with [NeIII]3869 detections and composite $zsim2$ spectra binned by stellar mass. With no requirement of [NeIII]3869 detection, the latter provide a more representative picture of neon emission-line properties in the MOSDEF sample. The [NeIII]3869/[OII]3727 ratio (Ne3O2) is anti-correlated with stellar mass in $zsim2$ galaxies, as expected based on the mass-metallicity relation. It is also positively correlated with the [OIII]$5007$/[OII]$3727$ ratio (O32), but $zsim2$ line ratios are offset towards higher Ne3O2 at fixed O32, compared with both local star-forming galaxies and individual H~II regions. Despite the offset towards higher Ne3O2 at fixed O32 at $zsim2$, biases in inferred Ne3O2-based metallicity are small. Accordingly, Ne3O2 may serve as an important metallicity indicator deep into the reionization epoch. Analyzing additional rest-optical line ratios including [NeIII]$3869$/[OIII]$5007$ (Ne3O3) and [OIII]$5007$/H$beta$ (O3H$beta$), we conclude that the nebular emission-line ratios of $zsim2$ star-forming galaxies suggest a harder ionizing spectrum (lower stellar metallicity, i.e., Fe/H) at fixed gas-phase oxygen abundance, compared to systems at $zsim0$. These new results based on neon lend support to the physical picture painted by oxygen, nitrogen, hydrogen, and sulfur emission, of an ionized ISM in high-redshift star-forming galaxies irradiated by chemically young, $alpha$-enhanced massive stars.
Identifying galaxy clustering at high redshift (i.e. z > 1) is essential to our understanding of the current cosmological model. However, at increasing redshift, clusters evolve considerably in star-formation activity and so are less likely to be ide ntified using the widely-used red sequence method. Here we assess the viability of instead identifying high redshift clustering using actively star-forming galaxies (SMGs associated with over-densities of BzKs/LBGs). We perform both a 2- and 3-D clustering analysis to determine whether or not true (3D) clustering can be identified where only 2D data are available. As expected, we find that 2D clustering signals are weak at best and inferred results are method dependant. In our 3D analysis, we identify 12 SMGs associated with an over-density of galaxies coincident both spatially and in redshift - just 8% of SMGs with known redshifts in our sample. Where an SMG in our target fields lacks a known redshift, their sightline is no more likely to display clustering than blank sky fields; prior redshift information for the SMG is required to identify a true clustering signal. We find that the strength of clustering in the volume around typical SMGs, while identifiable, is not exceptional. However, we identify a small number of highly clustered regions, all associated with an SMG. The most notable of these, surrounding LESSJ033336.8-274401, potentially contains an SMG, a QSO and 36 star-forming galaxies (a > 20sig over-density) all at z~1.8. This region is highly likely to represent an actively star-forming cluster and illustrates the success of using star-forming galaxies to select sites of early clustering. Given the increasing number of deep fields with large volumes of spectroscopy, or high quality and reliable photometric redshifts, this opens a new avenue for cluster identification in the young Universe.
We study the properties of a sample of 211 heavily-obscured Active Galactic Nucleus (AGN) candidates in the Extended Chandra Deep Field-South selecting objects with f_24/f_R>1000 and R-K>4.5. Of these, 18 were detected in X-rays and found to be obscu red AGN with neutral hydrogen column densities of ~10^23 cm^-2. In the X-ray undetected sample, the following evidence suggests a large fraction of heavily-obscured (Compton Thick) AGN: (i) The stacked X-ray signal of the sample is strong, with an observed ratio of soft to hard X-ray counts consistent with a population of ~90% heavily obscured AGN combined with 10% star-forming galaxies. (ii) The X-ray to mid-IR ratios for these sources are significantly larger than that of star-forming galaxies and ~2 orders of magnitude smaller than for the general AGN population, suggesting column densities of N_H>5x10^24 cm^-2. (iii) The Spitzer near- and mid-IR colors of these sources are consistent with those of the X-ray-detected sample if the effects of dust self-absorption are considered. Spectral fitting to the rest-frame UV/optical light (dominated by the host galaxy) returns stellar masses of ~10^11 M_sun and <E(B-V)> =0.5, and reveals evidence for a significant young stellar population, indicating that these sources are experiencing considerable star-formation. This sample of heavily-obscured AGN candidates implies a space density at z~2 of ~10^-5 Mpc^-3, finding a strong evolution in the number of L_X>10^44 erg/s sources from z=1.5 to 2.5, possibly consistent with a short-lived heavily-obscured phase before an unobscured quasar is visible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا