ترغب بنشر مسار تعليمي؟ اضغط هنا

Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers

194   0   0.0 ( 0 )
 نشر من قبل Emanuel Tutuc
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the fabrication of back-gated field-effect transistors (FETs) using ultra-thin, mechanically exfoliated MoSe2 flakes. The MoSe2 FETs are n-type and possess a high gate modulation, with On/Off ratios larger than 106. The devices show asymmetric characteristics upon swapping the source and drain, a finding explained by the presence of Schottky barriers at the metal contact/MoSe2 interface. Using four-point, back-gated devices we measure the intrinsic conductivity and mobility of MoSe2 as a function of gate bias, and temperature. Samples with a room temperature mobility of ~50 cm2/V.s show a strong temperature dependence, suggesting phonons are a dominant scattering mechanism.



قيم البحث

اقرأ أيضاً

We demonstrate dual-gated $p$-type field-effect transistors (FETs) based on few-layer tungsten diselenide (WSe$_2$) using high work-function platinum source/drain contacts, and a hexagonal boron nitride top-gate dielectric. A device topology with con tacts underneath the WSe$_2$ results in $p$-FETs with $I_{ON}$/$I_{OFF}$ ratios exceeding 10$^7$, and contacts that remain Ohmic down to cryogenic temperatures. The output characteristics show current saturation and gate tunable negative differential resistance. The devices show intrinsic hole mobilities around 140 cm$^2$/Vs at room temperature, and approaching 4,000 cm$^2$/Vs at 2 K. Temperature-dependent transport measurements show a metal-insulator transition, with an insulating phase at low densities, and a metallic phase at high densities. The mobility shows a strong temperature dependence consistent with phonon scattering, and saturates at low temperatures, possibly limited by Coulomb scattering, or defects.
We report the fabrication of ionic liquid (IL) gated field-effect transistors (FETs) consisting of bilayer and few-layer MoS2. Our transport measurements indicate that the electron mobility about 60 cm2V-1s-1 at 250 K in ionic liquid gated devices ex ceeds significantly that of comparable back-gated devices. IL-FETs display a mobility increase from about 100 cm2V-1s-1 at 180 K to about 220 cm2V-1s-1 at 77 K in good agreement with the true channel mobility determined from four-terminal measurements, ambipolar behavior with a high ON/OFF ratio >107 (104) for electrons (holes), and a near ideal sub-threshold swing of about 50 mV/dec at 250 K. We attribute the observed performance enhancement, specifically the increased carrier mobility that is limited by phonons, to the reduction of the Schottky barrier at the source and drain electrode by band bending caused by the ultrathin ionic-liquid dielectric layer.
We report low temperature scanning tunneling microscopy characterization of MoSe2 crystals, and the fabrication and electrical characterization of MoSe2 field-effect transistors on both SiO2 and parylene-C substrates. We find that the multilayer MoSe 2 devices on parylene-C show a room temperature mobility close to the mobility of bulk MoSe2 (100 cm2V-1s-1 - 160 cm2V-1s-1), which is significantly higher than that on SiO2 substrate (~50 cm2V-1s-1). The room temperature mobility on both types of substrates are nearly thickness independent. Our variable temperature transport measurements reveal a metal-insulator transition at a characteristic conductivity of e2/h. The mobility of MoSe2 devices extracted from the metallic region on both SiO2 and parylene-C increases up to ~ 500 cm2V-1s-1 as the temperature decreases to ~ 100 K, with the mobility of MoSe2 on SiO2 increasing more rapidly. In spite of the notable variation of charged impurities as indicated by the strongly sample dependent low temperature mobility, the mobility of all MoSe2 devices on SiO2 converges above 200 K, indicating that the high temperature (> 200 K) mobility in these devices is nearly independent of the charged impurities. Our atomic force microscopy study of SiO2 and parylene-C substrates further rule out the surface roughness scattering as a major cause of the substrate dependent mobility. We attribute the observed substrate dependence of MoSe2 mobility primarily to the surface polar optical phonon scattering originating from the SiO2 substrate, which is nearly absent in MoSe2 devices on parylene-C substrate.
We present a detailed investigation of the exciton and trion dynamics in naturally doped MoSe2 and WSe2 single atomic layers as a function of temperature in the range 10-300K under above band-gap laser excitation. By combining time-integrated and tim e-resolved photoluminescence (PL) spectroscopy we show the importance of exciton and trion localization in both materials at low temperatures. We also reveal the transition to delocalized exciton complexes at higher temperatures where the exciton and trion thermal energy exceeds the typical localization energy. This is accompanied with strong changes in PL including suppression of the trion PL and decrease of the trion PL life-time, as well as significant changes for neutral excitons in the temperature dependence of the PL intensity and appearance of a pronounced slow PL decay component. In MoSe2 and WSe2 studied here, the temperatures where such strong changes occur are observed at around 100 and 200 K, respectively, in agreement with their inhomogeneous PL linewidth of 8 and 20 meV at T~10K. The observed behavior is a result of a complex interplay between influences of the specific energy ordering of bright and dark excitons in MoSe2 and WSe2, sample doping, trion and exciton localization and various temperature-dependent non-radiative processes.
264 - Ik-Sun Hong , Kyung-Jin Lee 2019
Magnetic skyrmions are of considerable interest for low-power memory and logic devices because of high speed at low current and high stability due to topological protection. We propose a skyrmion field-effect transistor based on a gate-controlled Dzy aloshinskii-Moriya interaction. A key working principle of the proposed skyrmion field-effect transistor is a large transverse motion of skyrmion, caused by an effective equilibrium damping-like spin-orbit torque due to spatially inhomogeneous Dzyaloshinskii-Moriya interaction. This large transverse motion can be categorized as the skyrmion Hall effect, but has been unrecognized previously. The propose device is capable of multi-bit operation and Boolean functions, and thus is expected to serve as a low-power logic device based on the magnetic solitons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا