ﻻ يوجد ملخص باللغة العربية
The realization of artificial gauge fields and spin-orbit coupling for ultra-cold quantum gases promises new insight into paradigm solid state systems. Here we experimentally probe the dispersion relation of a spin-orbit coupled Bose-Einstein condensate loaded into a translating optical lattice by observing its dynamical stability, and develop an effective band structure that provides a theoretical understanding of the locations of the band edges. This system presents exciting new opportunities for engineering condensed-matter analogs using the flexible toolbox of ultra-cold quantum gases.
Solitons play a fundamental role in dynamics of nonlinear excitations. Here we explore the motion of solitons in one-dimensional uniform Bose-Einstein condensates subjected to a spin-orbit coupling (SOC). We demonstrate that the spin dynamics of soli
We theoretically study dilute superfluidity of spin-1 bosons with antiferromagnetic interactions and synthetic spin-orbit coupling (SOC) in a one-dimensional lattice. Employing a combination of density matrix renormalization group and quantum field t
Binary mixtures of Bose-Einstein condensates trapped in deep optical lattices and subjected to equal contributions of Rashba and Dresselhaus spin-orbit coupling (SOC), are investigated in the presence of a periodic time modulation of the Zeeman field
We theoretically investigate the dynamics of modulation instability (MI) in two-dimensional spin-orbit coupled Bose-Einstein condensates (BECs). The analysis is performed for equal densities of pseudo-spin components. Different combination of the sig
We present OpenMP version of a Fortran program for solving the Gross-Pitaevskii equation for a harmonically trapped three-component rotating spin-1 spinor Bose-Einstein condensate (BEC) in two spatial dimensions with or without spin-orbit (SO) and Ra