ﻻ يوجد ملخص باللغة العربية
We present neutron scattering measurements of the dynamic structure factor, $S(Q,omega)$, of amorphous solid helium confined in 47 $AA$ pore diameter MCM-41 at pressure 48.6 bar. At low temperature, $T$ = 0.05 K, we observe $S(Q,omega)$ of the confined quantum amorphous solid plus the bulk polycrystalline solid between the MCM-41 powder grains. No liquid-like phonon-roton modes, other sharply defined modes at low energy ($omega<$ 1.0 meV) or modes unique to a quantum amorphous solid that might suggest superflow are observed. Rather the $S(Q,omega)$ of confined amorphous and bulk polycrystalline solid appear to be very similar. At higher temperature ($T>$ 1 K), the amorphous solid in the MCM-41 pores melts to a liquid which has a broad $S(Q,omega)$ peaked near $omega simeq$ 0 characteristic of normal liquid $^4$He under pressure. Expressions for the $S(Q,omega)$ of amorphous and polycrystalline solid helium are presented and compared. In previous measurements of liquid $^4$He confined in MCM-41 at lower pressure the intensity in the liquid roton mode decreases with increasing pressure until the roton vanishes at the solidification pressure (38 bars), consistent with no roton in the solid observed here.
The irrotational nature of superfluid helium was discovered through its decoupling from the container under rotation. Similarly, the resonant period drop of a torsional oscillator (TO) containing solid helium was first interpreted as the decoupling o
In a 2DEG confined to two coaxial tubes the `tube degree of freedom can be described in terms of pseudospin-1/2 dynamics. The presence of tunneling between the two tubes leads to a collective oscillation known as pseudospin resonance. We employ pertu
We present the results of an experiment where amorphous carbon was irradiated by femtosecond x-ray free electron laser pulses. The 830 eV laser pulses induce a phase transition in the material which is characterized ex-situ. The phase transition ener
Electrons on liquid helium can form different phases depending on density, and temperature. Also the electron-ripplon coupling strength influences the phase diagram, through the formation of so-called ripplonic polarons, that change how electrons are
The first two successful predictions for amorphous solid experiments by tunneling-two-level-system (TTLS) was phonon echo and saturation phenomena. In this paper by generalizing TTLS to infinite-level-system model with certain randomness and nonlinea