ترغب بنشر مسار تعليمي؟ اضغط هنا

Pseudospin excitations in coaxial nanotubes

102   0   0.0 ( 0 )
 نشر من قبل Benedikt Scharf
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a 2DEG confined to two coaxial tubes the `tube degree of freedom can be described in terms of pseudospin-1/2 dynamics. The presence of tunneling between the two tubes leads to a collective oscillation known as pseudospin resonance. We employ perturbation theory to examine the dependence of the frequency of this mode with respect to a coaxial magnetic field for the case of small intertube distances. Coulomb interaction leads to a shift of the resonance frequency and to a finite lifetime of the pseudospin excitations. The presence of the coaxial magnetic field gives rise to pronounced peaks in the shift of the resonance frequency. For large magnetic fields this shift vanishes due to the effects of Zeeman splitting. Finally, an expression for the linewidth of the resonance is derived. Numerical analysis of this expression suggests that the linewidth strongly depends on the coaxial magnetic field, which leads to several peaks of the linewidth as well as regions where damping is almost completely suppressed.



قيم البحث

اقرأ أيضاً

We present neutron scattering measurements of the dynamic structure factor, $S(Q,omega)$, of amorphous solid helium confined in 47 $AA$ pore diameter MCM-41 at pressure 48.6 bar. At low temperature, $T$ = 0.05 K, we observe $S(Q,omega)$ of the confin ed quantum amorphous solid plus the bulk polycrystalline solid between the MCM-41 powder grains. No liquid-like phonon-roton modes, other sharply defined modes at low energy ($omega<$ 1.0 meV) or modes unique to a quantum amorphous solid that might suggest superflow are observed. Rather the $S(Q,omega)$ of confined amorphous and bulk polycrystalline solid appear to be very similar. At higher temperature ($T>$ 1 K), the amorphous solid in the MCM-41 pores melts to a liquid which has a broad $S(Q,omega)$ peaked near $omega simeq$ 0 characteristic of normal liquid $^4$He under pressure. Expressions for the $S(Q,omega)$ of amorphous and polycrystalline solid helium are presented and compared. In previous measurements of liquid $^4$He confined in MCM-41 at lower pressure the intensity in the liquid roton mode decreases with increasing pressure until the roton vanishes at the solidification pressure (38 bars), consistent with no roton in the solid observed here.
The pseudospin of Dirac electrons in graphene manifests itself in a peculiar momentum anisotropy for photo-excited electron-hole pairs. These interband excitations are in fact forbidden along the direction of the light polarization, and are maximum p erpendicular to it. Here, we use time- and angle-resolved photoemission spectroscopy to investigate the resulting unconventional hot carrier dynamics, sampling carrier distributions as a function of energy and in-plane momentum. We first show that the rapidly-established quasi-thermal electron distribution initially exhibits an azimuth-dependent temperature, consistent with relaxation through collinear electron-electron scattering. Azimuthal thermalization is found to occur only at longer time delays, at a rate that depends on the substrate and the static doping level. Further, we observe pronounced differences in the electron and hole dynamics in n-doped samples. By simulating the Coulomb- and phonon-mediated carrier dynamics we are able to disentangle the influence of excitation fluence, screening, and doping, and develop a microscopic picture of the carrier dynamics in photo-excited graphene. Our results clarify new aspects of hot carrier dynamics that are unique to Dirac materials, with relevance for photo-control experiments and optoelectronic device applications.
108 - Sourav Nandy , K. Sengupta , 2019
We study transport across ballistic junctions of materials which host pseudospin-one fermions as emergent low-energy quasiparticles. The effective low-energy Hamiltonians of such fermions are described by integer spin Weyl models. We show that curren t conservation in such integer spin-$s$ Weyl systems requires continuity across a boundary of only $2s$ (out of $2s+1$) components of the wave function. Using the current conservation conditions, we study the transport between normal metal-barrier-normal metal (NBN) and normal metal-barrier-superconductor (NBS) junctions of such systems in the presence of an applied voltage $eV$. We show that for a specific value of the barrier potential $U_0$, such NBN junctions act as perfect collimators; any quasiparticle which is incident on the barrier with a non-zero angle of incidence is reflected back with unit probability for any barrier width $d$. We discover an interesting symmetry of this system, namely, the conductance is invariant under $U_0 to 2(mu_L pm eV)-U_0$, where $mu_L$ is the chemical potential and the +(-) sign corresponds to particle (hole) mediated transport. For NBS junctions with a proximity-induced $s$-wave pairing potential, which also display such a collimation, we chart out the properties of the subgap tunneling conductance $G$ as a function of the barrier strength and applied voltage. We point out the effect of the collimation on the subgap tunneling conductance of these NBS junctions and discuss experiments which can test our theory.
163 - Jay D. Sau , Sumanta Tewari 2011
We show that carbon nanotubes (CNT) are good candidates for realizing one-dimensional topological superconductivity with Majorana fermions localized near the end points. The physics behind topological superconductivity in CNT is novel and is mediated by a recently reported curvature-induced spin-orbit coupling which itself has a topological origin. In addition to the spin-orbit coupling, an important new requirement for a robust topological state is broken chirality symmetry about the nanotube axis. We use topological arguments to show that, for recently realized strengths of spin-orbit coupling and broken chirality symmetry, a robust topological gap of around 500 mK is achievable in carbon nanotubes.
Recent experimental and theoretical results on intrinsic superconductivity in ropes of single-wall carbon nanotubes are reviewed and compared. We find strong experimental evidence for superconductivity when the distance between the normal electrodes is large enough. This indicates the presence of attractive phonon-mediated interactions in carbon nanotubes, which can even overcome the repulsive Coulomb interactions. The effective low-energy theory of rope superconductivity explains the experimental results on the temperature-dependent resistance below the transition temperature in terms of quantum phase slips. Quantitative agreement with only one fit parameter can be obtained. Nanotube ropes thus represent superconductors in an extreme 1D limit never explored before.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا