ﻻ يوجد ملخص باللغة العربية
In general, a quantum measurement yields an undetermined answer and alters the system to be consistent with the measurement result. This process maps multiple initial states into a single state and thus cannot be reversed. This has important implications in quantum information processing, where errors can be interpreted as measurements. Therefore, it seems that it is impossible to correct errors in a quantum information processor, but protocols exist that are capable of eliminating them if they affect only part of the system. In this work we present the deterministic reversal of a fully projective measurement on a single particle, enabled by a quantum error-correction protocol that distributes the information over three particles.
We analyze the backaction of homodyne detection and photodetection on superconducting qubits in circuit quantum electrodynamics. Although both measurement schemes give rise to backaction in the form of stochastic phase rotations, which leads to depha
Undoing a unitary operation, $i.e$. reversing its action, is the task of canceling the effects of a unitary evolution on a quantum system, and it may be easily achieved when the unitary is known. Given a unitary operation without any specific descrip
Recently, there has been a renewed interest in the quantification of coherence or other coherence-like concepts within the framework of quantum resource theory. However, rigorously defined or not, the notion of coherence or decoherence has already be
In this work, we consider the preservation of a measurement for quantum systems interacting with an environment. Namely, a method of preserving an optimal measurement over a channel is devised, what we call channel coding of a quantum measurement in
Variational quantum eigensolvers (VQEs) combine classical optimization with efficient cost function evaluations on quantum computers. We propose a new approach to VQEs using the principles of measurement-based quantum computation. This strategy uses