ﻻ يوجد ملخص باللغة العربية
In this work, we consider the preservation of a measurement for quantum systems interacting with an environment. Namely, a method of preserving an optimal measurement over a channel is devised, what we call channel coding of a quantum measurement in that operations are applied before and after a channel in order to protect a measurement. A protocol that preserves a quantum measurement over an arbitrary channel is shown only with local operations and classical communication without the use of a larger Hilbert space. Therefore, the protocol is readily feasible with present days technologies. Channel coding of qubit measurements is presented, and it is shown that a measurement can be preserved for an arbitrary channel for both i) pairs of qubit states and ii) ensembles of equally probable states. The protocol of preserving a quantum measurement is demonstrated with IBM quantum computers.
We introduce and experimentally demonstrate a method for realising a quantum channel using the measurement-based model. Using a photonic setup and modifying the bases of single-qubit measurements on a four-qubit entangled cluster state, representativ
Quantum network coding has been proposed to improve resource utilization to support distributed computation but has not yet been put in to practice. We investigate a particular implementation of quantum network coding using measurement-based quantum
The von Neumann entropy of a quantum state is a central concept in physics and information theory, having a number of compelling physical interpretations. There is a certain perspective that the most fundamental notion in quantum mechanics is that of
Quantum network coding is an effective solution for alleviating bottlenecks in quantum networks. We introduce a measurement-based quantum network coding scheme for quantum repeater networks (MQNC), and analyze its behavior based on results acquired f