ترغب بنشر مسار تعليمي؟ اضغط هنا

Black hole mergers: do gas discs lead to spin alignment?

328   0   0.0 ( 0 )
 نشر من قبل Giuseppe Lodato
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this Letter we revisit arguments suggesting that the Bardeen-Petterson effect can coalign the spins of a central supermassive black hole binary accreting from a circumbinary (or circumnuclear) gas disc. We improve on previous estimates by adding the dependence on system parameters, and noting that the nonlinear nature of warp propagation in a thin viscous disc affects alignment. This reduces the discs ability to communicate the warp, and can severely reduce the effectiveness of disc-assisted spin alignment. We test our predictions with a Monte Carlo realization of random misalignments and accretion rates and we find that the outcome depends strongly on the spin magnitude. We estimate a generous upper limit to the probability of alignment by making assumptions which favour it throughout. Even with these assumptions, about 40% of black holes with $a gtrsim 0.5$ do not have time to align with the disc. If the residual misalignment is not small and it is maintained down to the final coalescence phase this can give a powerful recoil velocity to the merged hole. Highly spinning black holes are thus more likely of being subject to strong recoils, the occurrence of which is currently debated.



قيم البحث

اقرأ أيضاً

115 - Kentaro Nagamine 2011
We study the gas accretion onto a supermassive black hole (SMBH) using the 3D SPH code GADGET-3 on scales of 0.1-200 pc. First we test our code with spherically symmetric, adiabatic Bondi accretion problem. We find that our simulation can reproduce t he expected Bondi accretion flow very well for a limited amount of time until the effect of outer boundary starts to be visible. We also find artificial heating of gas near the inner accretion boundary due to the artificial viscosity of SPH. Second, we implement radiative cooling and heating due to X-rays, and examine the impact of thermal feedback by the central X-ray source. The accretion flow roughly follows the Bondi solution for low central X-ray luminosities, however, the flow starts to exhibit non-spherical fragmentation due to thermal instability for a certain range of central L_X, and a strong overall outflow develops for greater L_X. The cold gas develops filamentary structures that fall into the central SMBH, whereas the hot gas tries to escape through the channels in-between the cold filaments. Such fragmentation of accreting gas can assist in the formation of clouds around AGN, induce star-formation, and contribute to the observed variability of narrow-line regions.
Within the framework of 2PN black-hole binary spin precession, we explore configurations where one of the two spins oscillates from being completely aligned with the orbital angular momentum to being completely anti-aligned with it during a single pr ecession cycle. This wide nutation is the extreme limit of the generic phenomenon of spin nutation in black-hole binaries. Crucially, wide nutation happens on the short precession time scale and it is not a secular effect due to gravitational-wave radiation reaction. The spins of these binaries, therefore, flip repeatedly as one of these special configurations is entered. Binaries with total mass $M$, mass ratio $q$, and dimensionless spin $chi_1$ ($chi_2$) of the more (less) massive black hole are allowed to undergo wide nutation at binary separations $r leq r_{rm wide} equiv [(q chi_2 - chi_1)/(1-q)]^2 M$. Sources that are more likely to nutate widely have similar masses and effective spins close to zero.
We present a method to include lensing selection effects due to the finite horizon of a given detector when studying lensing of gravitational wave (GW) sources. When selection effects are included, the mean of the magnification distribution is shifte d from one to higher values for sufficiently high-redshift sources. This introduces an irreducible (multiplicative) bias on the luminosity distance reconstruction, in addition to the typical source of uncertainty in the distance determination. We apply this method to study lensing of GWs emitted by massive black hole binary mergers at high redshift detectable by LISA. We estimate the expected bias induced by selection effects on the luminosity distance reconstruction as function of cosmological redshift, and discuss its implications for cosmological and astrophysical analyses with LISA. We also reconstruct the distribution of lensing magnification as a function of the observed luminosity distance to a source, that is the observable quantity in the absence of an electromagnetic counterpart. Lensing provides the dominant source of errors in distance measurements of high-redshift GW sources. Its full characterisation, including the impact of selection effects, is of paramount importance to correctly determine the astrophysical properties of the underlying source population and to be able to use gravitational wave sources as a new cosmological probe.
Using the Binary Population and Spectral Synthesis code BPASS, we have calculated the rates, timescales and mass distributions for binary black hole mergers as a function of metallicity. We consider these in the context of the recently reported 1st L IGO event detection. We find that the event has a very low probability of arising from a stellar population with initial metallicity mass fraction above Z=0.010 (Z>0.5Zsun). Binary black hole merger events with the reported masses are most likely in populations below 0.008 (Z<0.4Zsun). Events of this kind can occur at all stellar population ages from ~3 Myr up to the age of the universe, but constitute only 0.1 to 0.4 per cent of binary BH mergers between metallicities of Z=0.001 to 0.008. However at metallicity Z=0.0001, 26 per cent of binary BH mergers would be expected to have the reported masses. At this metallicity the progenitor merger times can be close to ~10Gyr and rotationally-mixed stars evolving through quasi-homogeneous evolution, due to mass transfer in a binary, dominate the rate. The masses inferred for the black holes in the binary progenitor of GW,150914 are amongst the most massive expected at anything but the lowest metallicities in our models. We discuss the implications of our analysis for the electromagnetic follow-up of future LIGO event detections.
315 - D.M. Alexander 2009
It is well established that a dominant phase in the growth of massive galaxies occurred at high redshift and was heavily obscured by gas and dust. Many studies have explored the stellar growth of massive galaxies but few have combined these constrain ts with the growth of the supermassive black hole (SMBH; i.e., identified as AGN activity). In this brief contribution we highlight our work aimed at identifying AGNs in z~2 luminous dust-obscured galaxies. Using both sensitive X-ray and infrared (IR)-submillimeter (submm) observations, we show that AGN activity is common in z~2 dust-obscured systems. With a variety of techniques we have found that the majority of the AGN activity is heavily obscured, and construct diagnostics based on X-ray-IR data to identify some of the most heavily obscured AGNs in the Universe (i.e., AGNs obscured by Compton-thick material; N_H>1.5x10^24 cm^-2). On the basis of these techniques we show that SMBH growth was typically heavily obscured (N_H>10^23 cm^-2) at z~2, and find that the growth of the SMBH and spheroid was closely connected, even in the most rapidly evolving systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا