ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying the Obscured Black-Hole Growth Phase of Distant Massive Galaxies

315   0   0.0 ( 0 )
 نشر من قبل D. M. Alexander
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D.M. Alexander




اسأل ChatGPT حول البحث

It is well established that a dominant phase in the growth of massive galaxies occurred at high redshift and was heavily obscured by gas and dust. Many studies have explored the stellar growth of massive galaxies but few have combined these constraints with the growth of the supermassive black hole (SMBH; i.e., identified as AGN activity). In this brief contribution we highlight our work aimed at identifying AGNs in z~2 luminous dust-obscured galaxies. Using both sensitive X-ray and infrared (IR)-submillimeter (submm) observations, we show that AGN activity is common in z~2 dust-obscured systems. With a variety of techniques we have found that the majority of the AGN activity is heavily obscured, and construct diagnostics based on X-ray-IR data to identify some of the most heavily obscured AGNs in the Universe (i.e., AGNs obscured by Compton-thick material; N_H>1.5x10^24 cm^-2). On the basis of these techniques we show that SMBH growth was typically heavily obscured (N_H>10^23 cm^-2) at z~2, and find that the growth of the SMBH and spheroid was closely connected, even in the most rapidly evolving systems.



قيم البحث

اقرأ أيضاً

We combine cosmological hydrodynamic simulations with analytic models to evaluate the role of galaxy-scale gravitational torques on the evolution of massive black holes at the centers of star-forming galaxies. We confirm and extend our earlier result s to show that torque-limited growth yields black holes and host galaxies evolving on average along the Mbh-Mbulge relation from early times down to z = 0 and that convergence onto the scaling relation occurs independent of the initial conditions and with no need for mass averaging through mergers or additional self-regulation processes. Smooth accretion dominates the long-term evolution, with black hole mergers with mass ratios >1:5 representing typically a small fraction of the total growth. Winds from the accretion disk are required to eject significant mass to suppress black hole growth, but there is no need for coupling this wind to galactic-scale gas to regulate black holes in a non-linear feedback loop. Torque-limited growth yields a close-to-linear relation for the star formation rate and the black hole accretion rate averaged over galaxy evolution time scales. However, the SFR-AGN connection has significant scatter owing to strong variability of black hole accretion at all resolved time scales. Eddington ratios can be described by a broad lognormal distribution with median value evolving roughly as (1 + z)^1.9, suggesting a main sequence for black hole growth similar to the cosmic evolution of specific SFRs. Our results offer an attractive scenario consistent with available observations in which cosmological gas infall and transport of angular momentum in the galaxy by gravitational instabilities regulate the long-term co-evolution of black holes and star-forming galaxies.
We present estimates of black hole accretion rates and nuclear, extended, and total star-formation rates for a complete sample of Seyfert galaxies. Using data from the Spitzer Space Telescope, we measure the active galactic nucleus (AGN) luminosity u sing the [O IV] 25.89 micron emission line and the star-forming luminosity using the 11.3 micron aromatic feature and extended 24 micron continuum emission. We find that black hole growth is strongly correlated with nuclear (r<1 kpc) star formation, but only weakly correlated with extended (r>1 kpc) star formation in the host galaxy. In particular, the nuclear star-formation rate (SFR) traced by the 11.3 micron aromatic feature follows a relationship with the black hole accretion rate (BHAR) of the form SFRproptoBHAR^0.8, with an observed scatter of 0.5 dex. This SFR-BHAR relationship persists when additional star formation in physically matched r=1 kpc apertures is included, taking the form SFRproptoBHAR^0.6. However, the relationship becomes almost indiscernible when total SFRs are considered. This suggests a physical connection between the gas on sub-kpc and sub-pc scales in local Seyfert galaxies that is not related to external processes in the host galaxy. It also suggests that the observed scaling between star formation and black hole growth for samples of AGNs will depend on whether the star formation is dominated by a nuclear or extended component. We estimate the integrated black hole and bulge growth that occurs in these galaxies and find that an AGN duty cycle of 5-10% would maintain the ratio between black hole and bulge masses seen in the local universe.
84 - Qing Yang , Bin Hu , Xiao-Dong Li 2018
We study the co-evolution of supermassive black holes (SMBHs) with galaxies by means of semi-analytic model (SAM) of galaxy formation based on sub-halo merger trees built from Millennium and Millennium-II simulation. We utilize the simulation results from Guo 2013 and Henriques 2015 to study two aspects of the co-evolution, emph{i.e.} the stochastic gravitational wave (GW) background generated by SMBH merger and the SMBH/galaxy clustering. The characteristic strain amplitude of GW background predicted by Guo 2013 and Henriques 2015 models are $A_{yr^{-1}}=5.00times10^{-16}$ and $A_{yr^{-1}}=9.42times10^{-17}$, respectively. We find the GW amplitude is very sensitive to the galaxy merger rate. The difference in the galaxy merger rate between Guo 2013 and Henriques 2015, results in a factor $5$ deviation in the GW strain amplitude. For clusterings, we calculate the spatially isotropic two point auto- and cross-correlation functions (2PCFs) for both SMBHs and galaxies by using the mock catalogs generated from Guo 2013 model. We find that all 2PCFs have positive dependence on both SMBH and galaxy mass. And there exist a significant time evolution in 2PCFs, namely, the clustering effect is enhanced at lower redshifts. Interestingly, this result is not reported in the active galactic nuclei samples in SDSS. Our analysis also shows that, roughly, SMBHs and galaxies, with galaxy mass $10^2sim10^3$ larger than SMBH mass, have similar pattern of clustering, which is a reflection of the co-evolution of SMBH and galaxy. Finally, we calculate the first ten multiples of the angular power spectrum of the energy density of GW background. We find the amplitude of angular power spectrum of the first ten multiples is about $10%$ to $60%$ of the monopole component in the whole frequency range.
We investigate the formation and growth of massive black hole (BH) seeds in dusty star-forming galaxies, relying and extending the framework proposed by Boco et al. 2020. Specifically, the latter envisages the migration of stellar compact remnants (n eutron stars and stellar-mass black holes) via gaseous dynamical friction towards the galaxy nuclear region, and their subsequent merging to grow a massive central BH seed. In this paper we add two relevant ingredients: (i) we include primordial BHs, that could constitute a fraction $f_{rm pBH}$ of the dark matter, as an additional component participating in the seed growth; (ii) we predict the stochastic gravitational wave background originated during the seed growth, both from stellar compact remnant and from primordial BH mergers. We find that the latter events contribute most to the initial growth of the central seed during a timescale of $10^6-10^7,rm yr$, before stellar compact remnant mergers and gas accretion take over. In addition, if the fraction of primordial BHs $f_{rm pBH}$ is large enough, gravitational waves emitted by their mergers in the nuclear galactic regions could be detected by future interferometers like Einsten Telescope, DECIGO and LISA. As for the associated stochastic gravitational wave background, we predict that it extends over the wide frequency band $10^{-6}lesssim f [{rm Hz}]lesssim 10$, which is very different from the typical range originated by mergers of isolated binary compact objects. On the one hand, the detection of such a background could be a smoking gun to test the proposed seed growth mechanism; on the other hand, it constitutes a relevant contaminant from astrophysical sources to be characterized and subtracted, in the challenging search for a primordial background of cosmological origin.
Super-massive black holes weighing up to $sim 10^9 , mathrm{M_{odot}}$ are in place by $z sim 7$, when the age of the Universe is $lesssim 1 , mathrm{Gyr}$. This implies a time crunch for their growth, since such high masses cannot be easily reached in standard accretion scenarios. Here, we explore the physical conditions that would lead to optimal growth wherein stable super-Eddington accretion would be permitted. Our analysis suggests that the preponderance of optimal conditions depends on two key parameters: the black hole mass and the host galaxy central gas density. In the high-efficiency region of this parameter space, a continuous stream of gas can accrete onto the black hole from large to small spatial scales, assuming a global isothermal profile for the host galaxy. Using analytical initial mass functions for black hole seeds, we find an enhanced probability of high-efficiency growth for seeds with initial masses $gtrsim 10^4 , mathrm{M_{odot}}$. Our picture suggests that a large population of high-$z$ lower-mass black holes that formed in the low-efficiency region, with low duty cycles and accretion rates, might remain undetectable as quasars, since we predict their bolometric luminosities to be $lesssim 10^{41} , mathrm{erg , s^{-1}}$. The presence of these sources might be revealed only via gravitational wave detections of their mergers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا