ترغب بنشر مسار تعليمي؟ اضغط هنا

Gas Accretion onto a Supermassive Black Hole: a step to model AGN feedback

131   0   0.0 ( 0 )
 نشر من قبل Kentaro Nagamine
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kentaro Nagamine




اسأل ChatGPT حول البحث

We study the gas accretion onto a supermassive black hole (SMBH) using the 3D SPH code GADGET-3 on scales of 0.1-200 pc. First we test our code with spherically symmetric, adiabatic Bondi accretion problem. We find that our simulation can reproduce the expected Bondi accretion flow very well for a limited amount of time until the effect of outer boundary starts to be visible. We also find artificial heating of gas near the inner accretion boundary due to the artificial viscosity of SPH. Second, we implement radiative cooling and heating due to X-rays, and examine the impact of thermal feedback by the central X-ray source. The accretion flow roughly follows the Bondi solution for low central X-ray luminosities, however, the flow starts to exhibit non-spherical fragmentation due to thermal instability for a certain range of central L_X, and a strong overall outflow develops for greater L_X. The cold gas develops filamentary structures that fall into the central SMBH, whereas the hot gas tries to escape through the channels in-between the cold filaments. Such fragmentation of accreting gas can assist in the formation of clouds around AGN, induce star-formation, and contribute to the observed variability of narrow-line regions.



قيم البحث

اقرأ أيضاً

Understanding the processes that drive galaxy formation and shape the observed properties of galaxies is one of the most interesting and challenging frontier problems of modern astrophysics. We now know that the evolution of galaxies is critically sh aped by the energy injection from accreting supermassive black holes (SMBHs). However, it is unclear how exactly the physics of this feedback process affects galaxy formation and evolution. In particular, a major challenge is unraveling how the energy released near the SMBHs is distributed over nine orders of magnitude in distance throughout galaxies and their immediate environments. The best place to study the impact of SMBH feedback is in the hot atmospheres of massive galaxies, groups, and galaxy clusters, which host the most massive black holes in the Universe, and where we can directly image the impact of black holes on their surroundings. We identify critical questions and potential measurements that will likely transform our understanding of the physics of SMBH feedback and how it shapes galaxies, through detailed measurements of (i) the thermodynamic and velocity fluctuations in the intracluster medium (ICM) as well as (ii) the composition of the bubbles inflated by SMBHs in the centers of galaxy clusters, and their influence on the cluster gas and galaxy growth, using the next generation of high spectral and spatial resolution X-ray and microwave telescopes.
Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely un constrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds - a departure from the hot mode accretion model - although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z=0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities can precipitate from this hot gas, producing a rain of cold clouds that fall toward the galaxys centre, sustaining star formation amid a kiloparsec-scale molecular nebula that inhabits its core. The observations show that these cold clouds also fuel black hole accretion, revealing shadows cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole in the galaxy centre, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.
In this Letter we revisit arguments suggesting that the Bardeen-Petterson effect can coalign the spins of a central supermassive black hole binary accreting from a circumbinary (or circumnuclear) gas disc. We improve on previous estimates by adding t he dependence on system parameters, and noting that the nonlinear nature of warp propagation in a thin viscous disc affects alignment. This reduces the discs ability to communicate the warp, and can severely reduce the effectiveness of disc-assisted spin alignment. We test our predictions with a Monte Carlo realization of random misalignments and accretion rates and we find that the outcome depends strongly on the spin magnitude. We estimate a generous upper limit to the probability of alignment by making assumptions which favour it throughout. Even with these assumptions, about 40% of black holes with $a gtrsim 0.5$ do not have time to align with the disc. If the residual misalignment is not small and it is maintained down to the final coalescence phase this can give a powerful recoil velocity to the merged hole. Highly spinning black holes are thus more likely of being subject to strong recoils, the occurrence of which is currently debated.
84 - Qing Yang , Bin Hu , Xiao-Dong Li 2018
We study the co-evolution of supermassive black holes (SMBHs) with galaxies by means of semi-analytic model (SAM) of galaxy formation based on sub-halo merger trees built from Millennium and Millennium-II simulation. We utilize the simulation results from Guo 2013 and Henriques 2015 to study two aspects of the co-evolution, emph{i.e.} the stochastic gravitational wave (GW) background generated by SMBH merger and the SMBH/galaxy clustering. The characteristic strain amplitude of GW background predicted by Guo 2013 and Henriques 2015 models are $A_{yr^{-1}}=5.00times10^{-16}$ and $A_{yr^{-1}}=9.42times10^{-17}$, respectively. We find the GW amplitude is very sensitive to the galaxy merger rate. The difference in the galaxy merger rate between Guo 2013 and Henriques 2015, results in a factor $5$ deviation in the GW strain amplitude. For clusterings, we calculate the spatially isotropic two point auto- and cross-correlation functions (2PCFs) for both SMBHs and galaxies by using the mock catalogs generated from Guo 2013 model. We find that all 2PCFs have positive dependence on both SMBH and galaxy mass. And there exist a significant time evolution in 2PCFs, namely, the clustering effect is enhanced at lower redshifts. Interestingly, this result is not reported in the active galactic nuclei samples in SDSS. Our analysis also shows that, roughly, SMBHs and galaxies, with galaxy mass $10^2sim10^3$ larger than SMBH mass, have similar pattern of clustering, which is a reflection of the co-evolution of SMBH and galaxy. Finally, we calculate the first ten multiples of the angular power spectrum of the energy density of GW background. We find the amplitude of angular power spectrum of the first ten multiples is about $10%$ to $60%$ of the monopole component in the whole frequency range.
We study a model in which supermassive black holes (SMBHs) can grow by the combined action of gas accretion on heavy seeds and mergers of both heavy (m_s^h=10^5 Msol) and light (m_s^l = 10^2 Msol) seeds. The former result from the direct collapse of gas in T_s^h >1.5x10^4K, H_2-free halos; the latter are the endproduct of a standard H_2-based star formation process. The H_2-free condition is attained by exposing halos to a strong (J_21 > 10^3) Lyman-Werner UV background produced by both accreting BHs and stars, thus establishing a self-regulated growth regime. We find that this condition is met already at z close to 18 in the highly biased regions in which quasars are born. The key parameter allowing the formation of SMBHs by z=6-7 is the fraction of halos that can form heavy seeds: the minimum requirement is that f_heavy>0.001; SMBH as large as 2x10^10 Msol can be obtained when f_heavy approaches unity. Independently of f_heavy, the model produces a high-z stellar bulge-black hole mass relation which is steeper than the local one, implying that SMBHs formed before their bulge was in place. The formation of heavy seeds, allowed by the Lyman-Werner radiative feedback in the quasar-forming environment, is crucial to achieve a fast growth of the SMBH by merger events in the early phases of its evolution, i.e. z>7. The UV photon production is largely dominated by stars in galaxies, i.e. black hole accretion radiation is sub-dominant. Interestingly, we find that the final mass of light BHs and of the SMBH in the quasar is roughly equal by z=6; by the same time only 19% of the initial baryon content has been converted into stars. The SMBH growth is dominated at all epochs z > 7.2 by mergers (exceeding accretion by a factor 2-50); at later times accretion becomes by far the most important growth channel. We finally discuss possible shortcomings of the model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا