ترغب بنشر مسار تعليمي؟ اضغط هنا

Large Diamagnetism of AV2Al20 (A = Y and La)

162   0   0.0 ( 0 )
 نشر من قبل Zenji Hiroi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We find anomalously large diamagnetic responses in the cage compounds AV2Al20 where A = Y and La, not A = Al0.3, Sc0.4, and Lu, despite the apparent similarities in crystal and electronic structures among these compounds. The magnetic susceptibilities of the Y and La compounds become -1.94 and -7.44 x 10-4 cm3 mol-1 at 10 K, respectively, the latter of which corresponds to approximately one-quarter of that of bismuth, a well-known diamagnetic material, in terms of unit volume. The origin is not clear but may be related to a specific evolution in the band structure, as the diamagnetic response increases with increasing lattice constant.



قيم البحث

اقرأ أيضاً

The Mott-insulating rare-earth titanates (RTiO$_3$, R being a rare-earth ion) are an important class of materials that encompasses interesting spin-orbital phases as well as ferromagnet-antiferromagnet and insulator-metal transitions. The growth of t hese materials has been plagued by difficulties related to overoxidation, which arises from a strong tendency of Ti$^{3+}$ to oxidize to Ti$^{4+}$. We describe our efforts to grow sizable single crystals of YTiO$_3$ and its La-substituted and Ca-doped variants with the optical travelling-solvent floating-zone technique. We present sample characterization $via$ chemical composition analysis, magnetometry, charge transport, neutron scattering, x-ray absorption spectroscopy and x-ray magnetic circular dichroism to understand macroscopic physical property variations associated with overoxidation. Furthermore, we demonstrate a good signal-to-noise ratio in inelastic magnetic neutron scattering measurements of spin-wave excitations. A superconducting impurity phase, found to appear in Ca-doped samples at high doping levels, is identified as TiO.
144 - G. Garbarino , C. Acha , P. Levy 2006
We report on DC and pulsed electric field sensitivity of the resistance of mixed valent Mn oxide based La(5/8-y)Pr(y)Ca(3/8)MnO(3) (y = 0.4) single crystals as a function of temperature. The low temperature regime of the resistivity is highly current and voltage dependent. An irreversible transition from high (HR) to a low resistivity (LR) is obtained upon the increase of the electric field up to a temperature dependent critical value (V_c). The current-voltage characteristics in the LR regime as well as the lack of a variation in the magnetization response when V_c is reached indicate the formation of a non-single connected filamentary conducting path. The temperature dependence of V_c indicates the existence of a consolute point where the conducting and insulating phases produce a critical behavior as a consequence of their separation.
Magnetic properties of polycrystalline Sm0.1Ca0.84Sr0.06MnO3 in pristine and metastable states have been investigated in wide range of temperatures and magnetic fields. It was found that below Curie temperature TC = 105 K the pristine state exhibits phase separation comprising ferromagnetic and antiferromagnetic phases. The metastable states with reduced magnetization were obtained by successive number of quick coolings of the sample placed in container with kerosene-oil mixture. By an increasing number of quick coolings (> 6) the long time relaxation appeared at 10 K and the magnetization reversed its sign and became strongly negative in wide temperature range, even under an applied magnetic field of 15 kOe. The observed field and temperature dependences of the magnetization in this state are reversed in comparison with the ordinary ferromagnetic ones. Above TC, the observed diamagnetic susceptibility of the reversed magnetization state at T = 120 K is ~ - 0.9 x 10-4 emu g-1 Oe-1. Only after some storage time at room temperature, the abnormal magnetic state is erasable. It is suggested that the negative magnetization observed results from a specific coupling of the nano/micro-size ferromagnetic regions with a surrounding diamagnetic matrix formed, in a puzzled way, by the repeating training (quick cooling) cycles.
We report the Sr substitution effect in an antiferromagnetic insulator LaMnAsO. The Sr doping limit is $xsim$ 0.10 under the synthesis conditions, as revealed by x-ray diffractions indicate. Upon Sr doping, the room-temperature resistivity drops by f ive orders of magnitude down to $sim$0.01 $Omegacdot$cm, and the temperature dependence of resistivity shows essentially metallic behavior for $xgeq$0.08. Hall and Seebeck measurements confirm consistently that the insulator-to-metal transition is due to hole doping. Strikingly, the room-temperature Seebeck coefficient for the metallic samples is as high as $sim240 mu$V/K, making the system as a possible candidate for thermoelectric applications.
The electronic and superconducting properties associated with the topologically non-trivial bands in Weyl semimetals have recently attracted much attention. We report the microscopic properties of the type-I Weyl semimetal TaAs measured by $^{75}$As nuclear magnetic (quadrupole) resonance under zero and elevated magnetic fields over a wide temperature range up to 500 K. The magnetic susceptibility measured by the Knight shift $K$ is found to be negative at low magnetic fields and have a strong field ($B$) dependence as ln$B$ at $T$ = 1.56 K. Such nonlinear field-dependent magnetization can be well accounted for by Landau diamagnetism arising from the 3D linearly dispersed bands, and thus is a fingerprint of topological semimetals. We further study the low-energy excitations by the spin-lattice relaxation rate 1/$T_{1}$. At zero field and 30 K $leq Tleq$ 250 K, 1/$T_{1}T$ shows a $T^{2}$ variation due to Weyl nodes excitations. At $B sim$ 13 T, $1/T_1T$ exhibits the same $T$-dependence but with a smaller value, scaling with $K^2propto T^2$, which indicates that the Korringa relation also holds for a Weyl semimetal. Analysis of the Korringa ratio reveals that the energy range of the linear bands is about 250 K in TaAs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا