ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidences of a consolute critical point in the Phase Separation regime of La(5/8-y)Pr(y)Ca(3/8)MnO(3) (y = 0.4) single crystals

145   0   0.0 ( 0 )
 نشر من قبل Carlos Acha
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on DC and pulsed electric field sensitivity of the resistance of mixed valent Mn oxide based La(5/8-y)Pr(y)Ca(3/8)MnO(3) (y = 0.4) single crystals as a function of temperature. The low temperature regime of the resistivity is highly current and voltage dependent. An irreversible transition from high (HR) to a low resistivity (LR) is obtained upon the increase of the electric field up to a temperature dependent critical value (V_c). The current-voltage characteristics in the LR regime as well as the lack of a variation in the magnetization response when V_c is reached indicate the formation of a non-single connected filamentary conducting path. The temperature dependence of V_c indicates the existence of a consolute point where the conducting and insulating phases produce a critical behavior as a consequence of their separation.

قيم البحث

اقرأ أيضاً

We demonstrate that magnetic phase separation and competing spin order in the colossal magnetoresistive (CMR) manganites can be directly explored via tuning strain in bulk samples of nanocrystalline La$_{1-x}$Ca$_x$MnO$_3$. Our results show that stra in can be reversibly frozen into the lattice in order to stabilize coexisting antiferromagnetic domains within the nominally ferromagnetic metallic state of La$_{5/8}$Ca$_{3/8}$MnO$_3$. The measurement of tunable phase separation via magnetic neutron powder diffraction presents a direct route of exploring the correlated spin properties of phase separated charge/magnetic order in highly strained CMR materials and opens a potential avenue for realizing intergrain spin tunnel junction networks with enhanced CMR behavior in a chemically homogeneous material.
We report a detailed study of the electric transport and magnetic properties of the LaNdCaMnO manganite system. Substitution of LaIII by smaller NdIII ions, reduces the mean ionic radius of the A site ion. We have studied samples in the entire range between rich La and rich Nd compounds. Results of DC magnetization and resistivity show that doping destabilize the FM character of the pure La compound and triggers the formation of a phase separated state at intermediate doping. We have also found evidence of a dynamical behaviour within the phase separated state. A phase diagram is constructed, summarizing the effect of chemical substitution on the system.
The Mott-insulating rare-earth titanates (RTiO$_3$, R being a rare-earth ion) are an important class of materials that encompasses interesting spin-orbital phases as well as ferromagnet-antiferromagnet and insulator-metal transitions. The growth of t hese materials has been plagued by difficulties related to overoxidation, which arises from a strong tendency of Ti$^{3+}$ to oxidize to Ti$^{4+}$. We describe our efforts to grow sizable single crystals of YTiO$_3$ and its La-substituted and Ca-doped variants with the optical travelling-solvent floating-zone technique. We present sample characterization $via$ chemical composition analysis, magnetometry, charge transport, neutron scattering, x-ray absorption spectroscopy and x-ray magnetic circular dichroism to understand macroscopic physical property variations associated with overoxidation. Furthermore, we demonstrate a good signal-to-noise ratio in inelastic magnetic neutron scattering measurements of spin-wave excitations. A superconducting impurity phase, found to appear in Ca-doped samples at high doping levels, is identified as TiO.
The magnetic, electric and thermal properties of the ($Ln_{1-y}$Y$_{y}$)$_{0.7}$Ca$_{0.3}$CoO$_3$ perovskites ($Ln$~=~Pr, Nd) were investigated down to very low temperatures. The main attention was given to a peculiar metal-insulator transition, whic h is observed in the praseodymium based samples with $y=0.075$ and 0.15 at $T_{M-I}=64$ and 132~K, respectively. The study suggests that the transition, reported originally in Pr$_{0.5}$Ca$_{0.5}$CoO$_3$, is not due to a mere change of cobalt ions from the intermediate- to the low-spin states, but is associated also with a significant electron transfer between Pr$^{3+}$ and Co$^{3+}$/Co$^{4+}$ sites, so that the praseodymium ions occur below $T_{M-I}$ in a mixed Pr$^{3+}$/Pr$^{4+}$ valence. The presence of Pr$^{4+}$ ions in the insulating phase of the yttrium doped samples (Pr$_{1-y}$Y$_{y}$)$_{0.7}$Ca$_{0.3}$CoO$_3$ is evidenced by Schottky peak originating in Zeeman splitting of the ground state Kramers doublet. The peak is absent in pure Pr$_{0.7}$Ca$_{0.3}$CoO$_3$ in which metallic phase, based solely on non-Kramers Pr$^{3+}$ ions, is retained down to the lowest temperature.
We report the detailed study of dielectric response of Pr(0.6)Ca(0.4)MnO(3) (PCMO), member of manganite family showing colossal magnetoresistance. Measurements have been performed on four polycrystalline samples and four single crystals, allowing us to compare and extract the essence of dielectric response in the material. High frequency dielectric function is found to be 30, as expected for the perovskite material. Dielectric relaxation is found in frequency window of 20Hz-1MHz at temperatures of 50-200K that yields to colossal low-frequency dielectric function, i.e. static dielectric constant. Static dielectric constant is always colossal, but varies considerably in different samples from 1000 until 100000. The measured data can be simulated very well by blocking (surface barrier) capacitance in series with sample resistance. This indicates that the large dielectric constant in PCMO arises from the Schottky barriers at electrical contacts. Measurements in magnetic field and with d.c. bias support this interpretation. Weak anomaly at the charge ordering temperature can also be attributed to interplay of sample and contact resistance. We comment our results in the framework of related studies by other groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا