ﻻ يوجد ملخص باللغة العربية
Magnetic properties of polycrystalline Sm0.1Ca0.84Sr0.06MnO3 in pristine and metastable states have been investigated in wide range of temperatures and magnetic fields. It was found that below Curie temperature TC = 105 K the pristine state exhibits phase separation comprising ferromagnetic and antiferromagnetic phases. The metastable states with reduced magnetization were obtained by successive number of quick coolings of the sample placed in container with kerosene-oil mixture. By an increasing number of quick coolings (> 6) the long time relaxation appeared at 10 K and the magnetization reversed its sign and became strongly negative in wide temperature range, even under an applied magnetic field of 15 kOe. The observed field and temperature dependences of the magnetization in this state are reversed in comparison with the ordinary ferromagnetic ones. Above TC, the observed diamagnetic susceptibility of the reversed magnetization state at T = 120 K is ~ - 0.9 x 10-4 emu g-1 Oe-1. Only after some storage time at room temperature, the abnormal magnetic state is erasable. It is suggested that the negative magnetization observed results from a specific coupling of the nano/micro-size ferromagnetic regions with a surrounding diamagnetic matrix formed, in a puzzled way, by the repeating training (quick cooling) cycles.
A major challenge in condensed matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers enabling access to transient or metastable states that are not thermally accessible.
Deterministic oscillations of current-induced metastable resistivity in changing voltage have been detected in La$_{0.82}$Ca$_{0.18}$MnO$_3$ single crystals. At low temperatures, below the Curie point, application of specific bias procedures switches
We study the magnetic and transport properties of all-manganite heterostructures consisting of ferromagnetic metallic electrodes separated by an antiferromagnetic barrier. We find that the magnetic ordering in the barrier is influenced by the relativ
We find anomalously large diamagnetic responses in the cage compounds AV2Al20 where A = Y and La, not A = Al0.3, Sc0.4, and Lu, despite the apparent similarities in crystal and electronic structures among these compounds. The magnetic susceptibilitie
The behavior of the low-frequency electromagnon in multiferroic DyMnO3 has been investigated in external magnetic fields and in a magnetically ordered state. Significant softening of the electromagnon frequency is observed for external magnetic field