ﻻ يوجد ملخص باللغة العربية
Microwave penetration depth $lambda$ and surface resistance at 27 GHz are measured in high quality crystals of KOs$_2$O$_6$. Firm evidence for fully-gapped superconductivity is provided from $lambda(T)$. Below the second transition at $T_{rm p}sim 8$ K, the superfluid density shows a step-like change with a suppression of effective critical temperature $T_{rm c}$. Concurrently, the extracted quasiparticle scattering time shows a steep enhancement, indicating a strong coupling between the anomalous rattling motion of K ions and quasiparticles. The results imply that the rattling phonons help to enhance superconductivity, and that K sites freeze to an ordered state with long quasiparticle mean free path below $T_{rm p}$.
We have determined the Fermi surface in KOs$_2$O$_6$ ($T_c$ = 9.6 K and $B_{c2} sim$ 32 T) via de Haas-van Alphen (dHvA) oscillation measurements and a band structure calculation. We find effective masses up to 26(1) $m_e$ ($m_e$ is the free electron
Magnetic torque measurements have been performed on a KOs$_2$O$_6$ single crystal in magnetic fields up to 35.3 T and at temperatures down to 0.6 K. The upper critical field is determined to be $sim$30 T. De Haas-van Alphen oscillations are observed.
Low temperature thermal conductivity, $kappa$, of optimally-doped Bi2212 was studied before and after the introduction of point defects by electron irradiation. The amplitude of the linear component of $kappa$ remains unchanged, confirming the univer
The electron paramagnetic resonance study for an organic superconductor $beta$-(BEDT-TTF)$_{4}$[(H$_3$O)Ga(C$_2$O$_4$)$_3$]$cdot$C$_6$H$_5$NO$_2$ reveals that superconductivity coexists uniformly with the charge ordered state in one material. In the
Since the discovery of the Verwey transition in magnetite, transition metal compounds with pyrochlore structures have been intensively studied as a platform for realizing remarkable electronic phase transitions. We report the discovery of a unique ph