ﻻ يوجد ملخص باللغة العربية
We consider the spectral statistics of the Floquet operator for disordered, periodically driven spin chains in their quantum chaotic and many-body localized phases (MBL). The spectral statistics are characterized by the traces of powers $t$ of the Floquet operator, and our approach hinges on the fact that, for integer $t$ in systems with local interactions, these traces can be re-expressed in terms of products of dual transfer matrices, each representing a spatial slice of the system. We focus on properties of the dual transfer matrix products as represented by a spectrum of Lyapunov exponents, which we call textit{spectral Lyapunov exponents}. In particular, we examine the features of this spectrum that distinguish chaotic and MBL phases. The transfer matrices can be block-diagonalized using time-translation symmetry, and so the spectral Lyapunov exponents are classified according to a momentum in the time direction. For large $t$ we argue that the leading Lyapunov exponents in each momentum sector tend to zero in the chaotic phase, while they remain finite in the MBL phase. These conclusions are based on results from three complementary types of calculation. We find exact results for the chaotic phase by considering a Floquet random quantum circuit with on-site Hilbert space dimension $q$ in the large-$q$ limit. In the MBL phase, we show that the spectral Lyapunov exponents remain finite by systematically analyzing models of non-interacting systems, weakly coupled systems, and local integrals of motion. Numerically, we compute the Lyapunov exponents for a Floquet random quantum circuit and for the kicked Ising model in the two phases. As an additional result, we calculate exactly the higher point spectral form factors (hpSFF) in the large-$q$ limit, and show that the generalized Thouless time scales logarithmically in system size for all hpSFF in the large-$q$ chaotic phase.
We study the spectral statistics of spatially-extended many-body quantum systems with on-site Abelian symmetries or local constraints, focusing primarily on those with conserved dipole and higher moments. In the limit of large local Hilbert space dim
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appea
We extend random matrix theory to consider randomly interacting spin systems with spatial locality. We develop several methods by which arbitrary correlators may be systematically evaluated in a limit where the local Hilbert space dimension $N$ is la
We study the consequences of having translational invariance in space and in time in many-body quantum chaotic systems. We consider an ensemble of random quantum circuits, composed of single-site random unitaries and nearest neighbour couplings, as a
We systematically investigate scrambling (or delocalizing) processes of quantum information encoded in quantum many-body systems by using numerical exact diagonalization. As a measure of scrambling, we adopt the tripartite mutual information (TMI) th