ﻻ يوجد ملخص باللغة العربية
In this paper, by using a stochastic reaction-diffusion-taxis model, we analyze the picophytoplankton dynamics in the basin of the Mediterranean Sea, characterized by poorly mixed waters. The model includes intraspecific competition of picophytoplankton for light and nutrients. The multiplicative noise sources present in the model account for random fluctuations of environmental variables. Phytoplankton distributions obtained from the model show a good agreement with experimental data sampled in two different sites of the Sicily Channel. The results could be extended to analyze data collected in different sites of the Mediterranean Sea and to devise predictive models for phytoplankton dynamics in oligotrophic waters.
The deep-water fauna of the Mediterranean is characterized by an absence of distinctive characteristics and by a relative impoverishment. Both are a result of events after the Messinian salinity crisis (Late Miocene). The three main classes of phenom
Although foot-and-mouth disease virus (FMDV) incidence has decreased in South America over the last years, the pathogen still circulates in the region and the risk of re-emergence in previously FMDV-free areas is a veterinary public health concern. I
The Mediterranean Sea is one of the most heavily invaded marine regions. This work focuses on the dynamics and potential policy options for ballast water-mediated nonindigenous species to the Mediterranean. Specifically, we (1) estimated port risks i
The simulation of complex stochastic network dynamics arising, for instance, from models of coupled biomolecular processes remains computationally challenging. Often, the necessity to scan a models dynamics over a large parameter space renders full-f
In this paper, we identify a radically new viewpoint on the collective behaviour of groups of intelligent agents. We first develop a highly general abstract model for the possible future lives that these agents may encounter as a result of their deci