ﻻ يوجد ملخص باللغة العربية
Although foot-and-mouth disease virus (FMDV) incidence has decreased in South America over the last years, the pathogen still circulates in the region and the risk of re-emergence in previously FMDV-free areas is a veterinary public health concern. In this paper we merge environmental, epidemiological and genetic data to reconstruct spatiotemporal patterns and determinants of FMDV serotypes A and O dispersal in South America. Our dating analysis suggests that serotype A emerged in South America around 1930, while serotype O emerged around 1990. The rate of evolution for serotype A was significantly higher compared to serotype O. Phylogeographic inference identified two well-connected sub networks of viral flow, one including Venezuela, Colombia and Ecuador; another including Brazil, Uruguay and Argentina. The spread of serotype A was best described by geographic distances, while trade of live cattle was the predictor that best explained serotype O spread. Our findings show that the two serotypes have different underlying evolutionary and spatial dynamics and may pose different threats to control programmes. Key-words: Phylogeography, foot-and-mouth disease virus, South America, animal trade.
We study the spatio-temporal patterns of the proportion of influenza B out of laboratory confirmations of both influenza A and B, with data from 139 countries and regions downloaded from the FluNet compiled by the World Health Organization, from Janu
We investigate a stochastic individual-based model for the population dynamics of host-virus systems where the hosts may transition into a dormant state upon contact with virions, thus evading infection. Such a dormancy-based defence mechanism was de
In this paper, by using a stochastic reaction-diffusion-taxis model, we analyze the picophytoplankton dynamics in the basin of the Mediterranean Sea, characterized by poorly mixed waters. The model includes intraspecific competition of picophytoplank
In this chapter, an application of Mathematical Epidemiology to crop vector-borne diseases is presented to investigate the interactions between crops, vectors, and virus. The main illustrative example is the cassava mosaic disease (CMD). The CMD viru
Population dynamics and evolutionary genetics underly the structure of ecosystems, changing on the same timescale for interacting species with rapid turnover, such as virus (e.g. HIV) and immune response. Thus, an important problem in mathematical mo