ﻻ يوجد ملخص باللغة العربية
The information loss paradox is usually stated as an incompatibility between general relativity and quantum mechanics. However, the assumptions leading to the problem are often overlooked and, in fact, a careful inspection of the main hypothesises suggests a radical reformulation of the problem. Indeed, we present a thought experiment involving a black hole that emits radiation and, independently of the nature of the radiation, we show the existence of an incompatibility between (i) the validity of the laws of general relativity to describe infalling matter far from the Planckian regime, and (ii) the so-called central dogma which states that as seen from an outside observer a black hole behaves like a quantum system whose number of degrees of freedom is proportional to the horizon area. We critically revise the standard arguments in support of the central dogma, and argue that they cannot hold true unless some new physics is invoked even before reaching Planck scales. This suggests that the information loss problem, in its current formulation, is not necessarily related to any loss of information or lack of unitarity. Therefore, in principle, semiclassical general relativity and quantum mechanics can be perfectly compatible before reaching the final stage of the black hole evaporation where, instead, a consistent theory of quantum gravity is needed to make any prediction.
A recent article by Mathur attempts a precise formulation for the paradox of black hole information loss [S. D. Mathur, arXiv:1108.0302v2 (hep-th)]. We point out that a key component of the above work, which refers to entangled pairs inside and outsi
Asymptotic Causal Diamonds (ACDs) are a natural flat space analogue of AdS causal wedges, and it has been argued previously that they may be useful for understanding bulk locality in flat space holography. In this paper, we use ACD-inspired ideas to
A sharp version of the information paradox involves a seeming violation of the monogamy of entanglement during black hole evaporation. We construct an analogous paradox in empty anti-de Sitter space. In a local quantum field theory, Bell correlations
By entangling soft massless particles one can create an arbitrarily large amount of entanglement entropy that carries an arbitrarily small amount of energy. Dropping this entropy into the black hole (b.h.) one can increase the b.h. entropy by an amou
Information about the collapsed matter in a black hole will be lost if Hawking radiations are truly thermal. Recent studies discover that information can be transmitted from a black hole by Hawking radiations, due to their spectrum deviating from exa