ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of social influence in Australian real-estate: market forecasting with a spatial agent-based model

66   0   0.0 ( 0 )
 نشر من قبل Benjamin Patrick Evans
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Housing markets are inherently spatial, yet many existing models fail to capture this spatial dimension. Here we introduce a new graph-based approach for incorporating a spatial component in a large-scale urban housing agent-based model (ABM). The model explicitly captures several social and economic factors that influence the agents decision-making behaviour (such as fear of missing out, their trend following aptitude, and the strength of their submarket outreach), and interprets these factors in spatial terms. The proposed model is calibrated and validated with the housing market data for the Greater Sydney region. The ABM simulation results not only include predictions for the overall market, but also produce area-specific forecasting at the level of local government areas within Sydney as arising from individual buy and sell decisions. In addition, the simulation results elucidate agent preferences in submarkets, highlighting differences in agent behaviour, for example, between first-time home buyers and investors, and between both local and overseas investors.

قيم البحث

اقرأ أيضاً

This paper presents performance analysis of hybrid model comprise of concordance and Genetic Programming (GP) to forecast financial market with some existing models. This scheme can be used for in depth analysis of stock market. Different measures of concordances such as Kendalls Tau, Ginis Mean Difference, Spearmans Rho, and weak interpretation of concordance are used to search for the pattern in past that look similar to present. Genetic Programming is then used to match the past trend to present trend as close as possible. Then Genetic Program estimates what will happen next based on what had happened next. The concept is validated using financial time series data (S&P 500 and NASDAQ indices) as sample data sets. The forecasted result is then compared with standard ARIMA model and other model to analyse its performance.
The three-state agent-based 2D model of financial markets as proposed by Giulia Iori has been extended by introducing increasing trust in the correctly predicting agents, a more realistic consultation procedure as well as a formal validation mechanis m. This paper shows that such a model correctly reproduces the three fundamental stylised facts: fat-tail log returns, power-law volatility autocorrelation decay in time and volatility clustering.
Indirect competition emerged from the complex organization of human societies, and knowledge of the existing network topology may aid in developing effective strategies for success. Here, we propose an agent-based model of competition with systems co -existing in a `small-world social network. We show that within the range of parameter values obtained from the model and empirical data, the network evolution is highly dependent on $k$, the local parameter describing the density of neighbors in the network. The model applied to language death and competition of telecommunication companies show strong correspondence with empirical data.
We propose an agent-based model of collective opinion formation to study the wisdom of crowds under social influence. The opinion of an agent is a continuous positive value, denoting its subjective answer to a factual question. The wisdom of crowds s tates that the average of all opinions is close to the truth, i.e. the correct answer. But if agents have the chance to adjust their opinion in response to the opinions of others, this effect can be destroyed. Our model investigates this scenario by evaluating two competing effects: (i) agents tend to keep their own opinion (individual conviction $beta$), (ii) they tend to adjust their opinion if they have information about the opinions of others (social influence $alpha$). For the latter, two different regimes (full information vs. aggregated information) are compared. Our simulations show that social influence only in rare cases enhances the wisdom of crowds. Most often, we find that agents converge to a collective opinion that is even farther away from the true answer. So, under social influence the wisdom of crowds can be systematically wrong.
One dimensional stylized model taking into account spatial activity of firms with uniformly distributed customers is proposed. The spatial selling area of each firm is defined by a short interval cut out from selling space (large interval). In this r epresentation, the firm size is directly associated with the size of its selling interval. The recursive synchronous dynamics of economic evolution is discussed where the growth rate is proportional to the firm size incremented by the term including the overlap of the selling area with areas of competing firms. Other words, the overlap of selling areas inherently generate a negative feedback originated from the pattern of demand. Numerical simulations focused on the obtaining of the firm size distributions uncovered that the range of free parameters where the Paretos law holds corresponds to the range for which the pair correlation between the nearest neighbor firms attains its minimum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا