ﻻ يوجد ملخص باللغة العربية
A simple, empirical signature of a first order phase transition in atomic nuclei is presented, the ratio of the energy of the 6+ level of the ground state band to the energy of the first excited 0+ state. This ratio provides an effective order parameter which is not only easy to measure, but also distinguishes between first and second order phase transitions and takes on a special value in the critical region. Data in the Nd-Dy region show these characteristics. In addition, a repeating degeneracy between alternate yrast states and successive excited 0+ states is found to correspond closely to the line of a first order phase transition in the framework of the Interacting Boson Approximation (IBA) model in the large N limit, pointing to a possible underlying symmetry in the critical region.
Experimental nuclear level densities at excitation energies below the neutron threshold follow closely a constant-temperature shape. This dependence is unexpected and poorly understood. In this work, a fundamental explanation of the observed constant
We study the nature of the dynamics in a first-order quantum phase transition between spherical and prolate-deformed nuclear shapes. Classical and quantum analyses reveal a change in the system from a chaotic Henon-Heiles behavior on the spherical si
We study the competing order and chaos in a first-order quantum phase transition with a high barrier. The boson model Hamiltonian employed, interpolates between its U(5) (spherical) and SU(3) (deformed) limits. A classical analysis reveals regular (c
We study the evolution of the dynamics across a generic first order quantum phase transition in an interacting boson model of nuclei. The dynamics inside the phase coexistence region exhibits a very simple pattern. A classical analysis reveals a robu
The search for a first-order phase transition in strongly interacting matter is one of the major objectives in the exploration of the phase diagram of Quantum Chromodynamics (QCD). In the present work we investigate dilepton radiation from the hot an