ترغب بنشر مسار تعليمي؟ اضغط هنا

Flashes in a Star Stream: Automated Classification of Astronomical Transient Events

53   0   0.0 ( 0 )
 نشر من قبل George Djorgovski
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An automated, rapid classification of transient events detected in the modern synoptic sky surveys is essential for their scientific utility and effective follow-up using scarce resources. This presents some unusual challenges: the data are sparse, heterogeneous and incomplete; evolving in time; and most of the relevant information comes not from the data stream itself, but from a variety of archival data and contextual information (spatial, temporal, and multi-wavelength). We are exploring a variety of novel techniques, mostly Bayesian, to respond to these challenges, using the ongoing CRTS sky survey as a testbed. The current surveys are already overwhelming our ability to effectively follow all of the potentially interesting events, and these challenges will grow by orders of magnitude over the next decade as the more ambitious sky surveys get under way. While we focus on an application in a specific domain (astrophysics), these challenges are more broadly relevant for event or anomaly detection and knowledge discovery in massive data streams.

قيم البحث

اقرأ أيضاً

Large-scale sky surveys have played a transformative role in our understanding of astrophysical transients, only made possible by increasingly powerful machine learning-based filtering to accurately sift through the vast quantities of incoming data g enerated. In this paper, we present a new real-bogus classifier based on a Bayesian convolutional neural network that provides nuanced, uncertainty-aware classification of transient candidates in difference imaging, and demonstrate its application to the datastream from the GOTO wide-field optical survey. Not only are candidates assigned a well-calibrated probability of being real, but also an associated confidence that can be used to prioritise human vetting efforts and inform future model optimisation via active learning. To fully realise the potential of this architecture, we present a fully-automated training set generation method which requires no human labelling, incorporating a novel data-driven augmentation method to significantly improve the recovery of faint and nuclear transient sources. We achieve competitive classification accuracy (FPR and FNR both below 1%) compared against classifiers trained with fully human-labelled datasets, whilst being significantly quicker and less labour-intensive to build. This data-driven approach is uniquely scalable to the upcoming challenges and data needs of next-generation transient surveys. We make our data generation and model training codes available to the community.
We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique kn own as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (Sep. 2013 through Feb. 2014) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factor of 13.4, while only 1 percent of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Here we characterize the algorithms performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility. An implementation of the algorithm and the training data used in this paper are available at http://portal.nersc.gov/project/dessn/autoscan.
We present a novel automated methodology to detect and classify periodic variable stars in a large database of photometric time series. The methods are based on multivariate Bayesian statistics and use a multi-stage approach. We applied our method to the ground-based data of the TrES Lyr1 field, which is also observed by the Kepler satellite, covering ~26000 stars. We found many eclipsing binaries as well as classical non-radial pulsators, such as slowly pulsating B stars, Gamma Doradus, Beta Cephei and Delta Scuti stars. Also a few classical radial pulsators were found.
We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from weeks to years, with arbitrary time sampling. We use light curves of periodic variable stars taken from OGLE and EROS-2 to train the model. To make our classifier relatively survey-independent, it is trained on 16 features extracted from the light curves (e.g. period, skewness, Fourier amplitude ratio). The model classifies light curves into one of seven superclasses - Delta Scuti, RR Lyrae, Cepheid, Type II Cepheid, eclipsing binary, long-period variable, non-variable - as well as subclasses of these, such as ab, c, d, and e types for RR Lyraes. When trained to give only superclasses, our model achieves 0.98 for both recall and precision as measured on an independent validation dataset (on a scale of 0 to 1). When trained to give subclasses, it achieves 0.81 for both recall and precision. In order to assess classification performance of the subclass model, we applied it to the MACHO, LINEAR, and ASAS periodic variables, which gave recall/precision of 0.92/0.98, 0.89/0.96, and 0.84/0.88, respectively. We also applied the subclass model to Hipparcos periodic variable stars of many other variability types that do not exist in our training set, in order to examine how much those types degrade the classification performance of our target classes. In addition, we investigate how the performance varies with the number of data points and duration of observations. We find that recall and precision do not vary significantly if the number of data points is larger than 80 and the duration is more than a few weeks. The classifier software of the subclass model is available from the GitHub repository (https://goo.gl/xmFO6Q).
We apply the technique of self-organising maps (Kohonen 1990) to the automated classification of singly periodic astronomical lightcurves. We find that our maps readily distinguish between lightcurve types in both synthetic and real datasets, and tha t the resulting maps do not depend sensitively on the chosen learning parameters. Automated data analysis techniques are likely to be become increasingly important as the size of astronomical datasets continues to increase, particularly with the advent of ultra-wide-field survey telescopes such as WASP, RAPTOR and ASAS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا