ﻻ يوجد ملخص باللغة العربية
We apply the technique of self-organising maps (Kohonen 1990) to the automated classification of singly periodic astronomical lightcurves. We find that our maps readily distinguish between lightcurve types in both synthetic and real datasets, and that the resulting maps do not depend sensitively on the chosen learning parameters. Automated data analysis techniques are likely to be become increasingly important as the size of astronomical datasets continues to increase, particularly with the advent of ultra-wide-field survey telescopes such as WASP, RAPTOR and ASAS.
We exploit the spectral archive of the Sloan Digital Sky Survey (SDSS) Data Release 7 to select unusual quasar spectra. The selection method is based on a combination of the power of self-organising maps and the visual inspection of a huge number of
Some argue that biologically inspired algorithms are the future of solving difficult problems in computer science. Others strongly believe that the future lies in the exploration of mathematical foundations of problems at hand. The field of computer
Accurate photometric redshift calibration is central to the robustness of all cosmology constraints from cosmic shear surveys. Analyses of the KiDS re-weighted training samples from all overlapping spectroscopic surveys to provide a direct redshift c
With the advent of large scale surveys the manual analysis and classification of individual radio source morphologies is rendered impossible as existing approaches do not scale. The analysis of complex morphological features in the spatial domain is
In the new era of very large telescopes, where data is crucial to expand scientific knowledge, we have witnessed many deep learning applications for the automatic classification of lightcurves. Recurrent neural networks (RNNs) are one of the models u