ترغب بنشر مسار تعليمي؟ اضغط هنا

No pseudosynchronous rotation for terrestrial planets and moons

86   0   0.0 ( 0 )
 نشر من قبل Michael Efroimsky
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reexamine the popular belief that a telluric planet or satellite on an eccentric orbit can, outside a spin-orbit resonance, be captured in a quasi-static tidal equilibrium called pseudosynchronous rotation. The existence of such configurations was deduced from oversimplified tidal models assuming either a constant tidal torque or a torque linear in the tidal frequency. A more accurate treatment requires that the torque be decomposed into the Darwin-Kaula series over the tidal modes, and that this decomposition be combined with a realistic choice of rheological properties of the mantle. This development demonstrates that there exist no stable equilibrium states for solid planets and moons, other than spin-orbit resonances.

قيم البحث

اقرأ أيضاً

105 - Nicolas B. Cowan 2015
Earth has a unique surface character among Solar System worlds. Not only does it harbor liquid water, but also large continents. An exoplanet with a similar appearance would remind us of home, but it is not obvious whether such a planet is more likel y to bear life than an entirely ocean-covered waterworld---after all, surface liquid water defines the canonical habitable zone. In this proceeding, I argue that 1) Earths bimodal surface character is critical to its long-term climate stability and hence is a signpost of habitability, and 2) we will be able to constrain the surface character of terrestrial exoplanets with next-generation space missions.
70 - David Russell 2013
A planetary mass scale and a system of composition codes are presented for describing the geophysical characteristics of exoplanets and Solar System planets, dwarf planets, and spherical moons. The composition classes characterize the rock, ice, and gas properties of planetary bodies. The planetary mass scale includes five mass classes with upper and lower mass limits derived from recent studies of the exoplanet mass radius and mass density relationships and the physical characteristics of planets, dwarf planets, and spherical moons in the Solar System. The combined mass and composition codes provide a geophysical classification that allows for comparison of the global mass and composition characteristics of exoplanets with the Solar Systems planets, dwarf planets, and spherical moons. The system is flexible and can be combined with additional codes characterizing other physical, dynamical, or biological characteristics of planets.
We investigate the formation of terrestrial planets in the late stage of planetary formation using two-planet model. At that time, the protostar has formed for about 3 Myr and the gas disk has dissipated. In the model, the perturbations from Jupiter and Saturn are considered. We also consider variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals. Our results show that, terrestrial planets are formed in 50 Myr, and the accretion rate is about $60% - 80%$. In each simulation, 3 - 4 terrestrial planets are formed inside Jupiter with masses of $0.15 - 3.6 M_{oplus}$. In the $0.5 - 4$ AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion could also happen a few times between two major planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of $10^8$ yr. In one of our simulations, com-mensurability of the orbital periods of planets is very common. Moreover, a librating-circulating 3:2 configuration of mean motion resonance is found.
The Moons changeable aspect during a lunar eclipse is largely attributable to variations in the refracted unscattered sunlight absorbed by the terrestrial atmosphere that occur as the satellite crosses the Earths shadow. The contribution to the Moons aspect from sunlight scattered at the Earths terminator is generally deemed minor. However, our analysis of a published spectrum of the 16 August 2008 lunar eclipse shows that diffuse sunlight is a major component of the measured spectrum at wavelengths shorter than 600 nm. The conclusion is supported by two distinct features, namely the spectrums tail at short wavelengths and the unequal absorption by an oxygen collisional complex at two nearby bands. Our findings are consistent with the presence of the volcanic cloud reported at high northern latitudes following the 7-8 August 2008 eruption in Alaska of the Kasatochi volcano. The cloud both attenuates the unscattered sunlight and enhances moderately the scattered component, thus modifying the contrast between the two contributions.
Structure in the planet distribution provides an insight into the processes that shape the formation and evolution of planets. The Kepler mission has led to an abundance of statistical discoveries in regards to planetary radius, but the number of obs erved planets with measured masses is much smaller. By incorporating results from recent mass determination programs, we have discovered a new gap emerging in the planet population for sub-Neptune mass planets with orbital periods less than 20 days. The gap follows a slope of decreasing mass with increasing orbital period, has a width of a few $M_oplus$, and is potentially completely devoid of planets. Fitting gaussian mixture models to the planet population in this region favours a bimodel distribution over a unimodel one with a reduction in Bayesian Information Criterion (BIC) of 19.9, highlighting the gap significance. We discuss several processes which could generate such a feature in the planet distribution, including a pileup of planets above the gap region, tidal interactions with the host star, dynamical interactions with the disk, with other planets, or with accreting material during the formation process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا